Chief Delphi

Chief Delphi (http://www.chiefdelphi.com/forums/index.php)
-   General Forum (http://www.chiefdelphi.com/forums/forumdisplay.php?f=16)
-   -   2015 Championship division simulated rankings (http://www.chiefdelphi.com/forums/showthread.php?t=136758)

Jeremy Germita 18-04-2015 22:42

2015 Championship division simulated rankings
 
Using the preliminary match schedules and teams' best OPRs, I've simulated the rankings using the Monte Carlo method.

With every iteration of the match schedule, matches were simulated by summing each teams' OPR and adding in pseudo-random terms corresponding to the "randomness" in a teams actual performance. I'm terrible at explaining with words, so here it is in pseudocode:
Code:

Total score = (OPR1 + (random1)) + (OPR2 + (random2)) + (OPR3 + (random3)) + (random4)
The random terms are in the range of +-10 points.
Each match schedule is simulated 10,000 times and the ranks are averaged. Also shown here are the minimum and maximum ranks for each team during the entire simulation.

Here are the results:

Archimedes division
Code:

Division: arc
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
1023        1.3978        8.0        1.0
234        3.2774        10.0        1.0
5048        3.4219        10.0        1.0
2338        3.8749        10.0        1.0
3602        5.5863        12.0        1.0
314        5.838        14.0        1.0
1640        6.1363        13.0        1.0
135        7.0366        14.0        1.0
1538        10.1193        26.0        3.0
1310        10.6298        26.0        3.0
2342        11.0901        28.0        4.0
68        12.8936        36.0        5.0
2974        15.017        39.0        6.0
3322        15.5098        40.0        5.0
188        17.0073        46.0        7.0
2383        17.359        41.0        8.0
5692        19.7484        51.0        8.0
5505        20.4726        51.0        8.0
4451        20.597        48.0        9.0
4334        22.3571        50.0        8.0
3996        22.3708        53.0        9.0
217        22.7253        53.0        9.0
4201        23.7182        57.0        9.0
857        24.2749        54.0        9.0
280        27.5464        56.0        9.0
5403        28.2321        58.0        10.0
2363        29.204        64.0        9.0
503        29.5875        65.0        10.0
2605        30.1541        62.0        11.0
3103        31.0615        64.0        9.0
836        31.261        65.0        11.0
1648        32.3423        65.0        11.0
2619        33.4638        66.0        12.0
3357        35.6073        66.0        12.0
3238        35.6572        67.0        12.0
1322        35.9092        67.0        12.0
2907        36.4762        68.0        12.0
1706        37.1455        67.0        12.0
1089        37.2545        67.0        13.0
51        43.9209        70.0        15.0
360        44.1808        71.0        16.0
3284        44.6796        73.0        16.0
1572        44.9483        73.0        17.0
2914        45.7168        73.0        17.0
2848        46.9173        73.0        17.0
5687        48.2902        76.0        16.0
2013        48.4849        73.0        18.0
4364        48.8246        74.0        16.0
115        49.5901        75.0        18.0
5162        49.6051        73.0        20.0
2220        49.7157        76.0        16.0
1714        50.227        75.0        20.0
378        51.4943        76.0        17.0
5571        52.4161        75.0        20.0
5667        52.4228        75.0        21.0
691        52.8187        76.0        21.0
4977        52.8632        75.0        18.0
207        55.2896        75.0        20.0
2655        55.8479        76.0        22.0
623        56.2741        76.0        19.0
5536        58.3966        76.0        24.0
1701        59.7677        76.0        23.0
1785        59.9578        76.0        22.0
201        61.9062        76.0        29.0
4213        62.6137        76.0        29.0
41        65.8071        76.0        35.0
5581        66.1306        76.0        36.0
122        67.0141        76.0        39.0
931        68.0114        76.0        39.0
5464        69.4854        76.0        42.0
108        70.3585        76.0        43.0
1700        70.7667        76.0        45.0
4010        71.1342        76.0        42.0
4207        71.9367        76.0        41.0
3278        72.1303        76.0        43.0
5212        72.693        76.0        50.0

Curie division:
Code:

Division: cur
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
1114        1.0089        3.0        1.0
148        2.2884        8.0        1.0
3309        3.4845        12.0        1.0
303        4.6597        15.0        2.0
701        5.0363        17.0        2.0
948        7.3999        26.0        2.0
379        7.5916        26.0        2.0
3959        9.5306        29.0        3.0
4143        10.0        30.0        2.0
1574        10.3795        34.0        2.0
107        12.4993        34.0        3.0
1506        13.8446        37.0        4.0
1156        14.7032        37.0        3.0
56        15.9575        39.0        4.0
3663        17.7725        44.0        4.0
1305        17.7855        45.0        4.0
230        18.2176        42.0        4.0
1816        18.475        44.0        3.0
70        21.5197        44.0        5.0
57        21.862        43.0        6.0
4450        21.9049        46.0        5.0
610        22.8467        49.0        5.0
5046        24.1467        48.0        6.0
120        24.4828        50.0        7.0
5603        24.5584        49.0        7.0
1318        26.0858        54.0        6.0
123        26.3189        49.0        6.0
176        26.4033        48.0        7.0
4061        27.1489        48.0        7.0
88        29.4096        53.0        7.0
5407        29.4362        56.0        8.0
4048        31.3101        55.0        8.0
4613        32.4036        57.0        8.0
5735        35.4293        65.0        11.0
3452        35.9888        60.0        8.0
1086        37.1413        61.0        10.0
2996        37.2362        69.0        13.0
2557        37.3111        63.0        13.0
3974        37.3914        65.0        14.0
2457        40.039        71.0        14.0
341        40.2421        65.0        14.0
1923        40.8736        67.0        16.0
3937        41.2006        66.0        14.0
271        44.3985        69.0        18.0
1319        44.4124        72.0        20.0
3008        44.6476        69.0        17.0
708        48.7769        74.0        20.0
4498        49.2479        74.0        22.0
4653        49.7691        73.0        24.0
2046        51.4662        74.0        26.0
4909        54.1636        75.0        25.0
5572        54.4503        75.0        28.0
4468        54.9184        74.0        27.0
649        56.0985        75.0        33.0
4146        56.1484        75.0        32.0
1622        56.1858        75.0        31.0
4073        57.9905        75.0        33.0
5472        58.1176        75.0        31.0
3495        58.9864        75.0        31.0
228        59.3296        75.0        31.0
2994        59.4883        75.0        34.0
842        59.557        75.0        33.0
900        61.4895        76.0        34.0
5585        62.6177        76.0        35.0
369        63.4445        76.0        38.0
5737        64.2227        76.0        37.0
339        64.8988        76.0        37.0
702        65.3298        76.0        40.0
3193        67.2007        76.0        41.0
4595        67.9674        76.0        38.0
4355        68.1887        76.0        43.0
5586        68.5742        76.0        43.0
2594        70.1853        76.0        46.0
4593        70.617        76.0        44.0
4080        73.9475        76.0        53.0
5654        75.8376        76.0        68.0

Galileo division:
Code:

Division: gal
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
2056        1.0141        3.0        1.0
1690        2.4628        10.0        1.0
1619        4.5228        19.0        1.0
330        4.5569        17.0        1.0
2502        6.3439        28.0        1.0
525        6.5243        27.0        1.0
3618        6.5887        27.0        1.0
2067        7.0049        25.0        2.0
2451        12.0282        35.0        2.0
494        12.1065        36.0        2.0
2836        13.6508        39.0        3.0
27        14.1012        41.0        3.0
365        14.3777        38.0        3.0
3146        16.6604        46.0        3.0
4719        16.9256        40.0        3.0
1189        18.2104        43.0        3.0
4373        20.0732        45.0        3.0
3674        21.0991        45.0        5.0
862        21.1596        48.0        4.0
492        21.5059        44.0        4.0
4961        21.6935        48.0        6.0
245        22.4827        45.0        5.0
1649        22.6178        49.0        5.0
3288        22.8511        48.0        5.0
1        23.442        48.0        6.0
876        23.4893        47.0        4.0
744        23.9551        50.0        5.0
5114        26.4369        51.0        6.0
5460        30.2612        53.0        9.0
3787        30.3468        55.0        8.0
2990        31.5868        61.0        8.0
3668        32.4142        56.0        9.0
219        32.6143        58.0        9.0
45        34.0551        61.0        10.0
1595        35.4828        62.0        12.0
384        35.63        62.0        10.0
2168        37.0177        62.0        9.0
1477        37.1256        63.0        12.0
1726        37.1268        66.0        11.0
5216        37.5237        66.0        12.0
2052        38.2241        65.0        11.0
3562        41.5632        66.0        14.0
1002        44.8684        70.0        19.0
1011        45.3243        68.0        18.0
1902        46.8596        70.0        19.0
5554        48.1529        72.0        23.0
191        48.7881        71.0        20.0
568        49.1348        73.0        20.0
3410        49.7448        70.0        25.0
604        50.2253        73.0        24.0
3142        51.2479        72.0        25.0
967        53.33        75.0        29.0
3944        53.4273        73.0        27.0
111        53.7225        73.0        27.0
5584        53.9458        73.0        29.0
1540        54.4917        72.0        25.0
3026        57.0137        75.0        27.0
1777        58.4356        74.0        26.0
2626        58.9074        76.0        31.0
102        59.0543        76.0        33.0
597        59.3459        76.0        34.0
5429        60.4745        75.0        34.0
4198        60.6687        76.0        36.0
237        61.0003        75.0        37.0
3770        63.4788        76.0        36.0
2375        63.8993        76.0        33.0
1547        64.8409        76.0        36.0
5541        65.075        76.0        42.0
3337        67.6656        76.0        43.0
5498        68.0382        76.0        42.0
5725        70.9994        76.0        47.0
3492        71.4055        76.0        49.0
3397        72.4184        76.0        50.0
3175        72.8355        76.0        51.0
5421        73.8469        76.0        57.0
4920        74.475        76.0        59.0

Newton Division:
Code:

Division: new
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
118        1.0002        2.0        1.0
1671        2.2887        6.0        1.0
1678        3.0969        9.0        2.0
195        3.9759        12.0        2.0
2607        6.5944        21.0        2.0
2522        7.017        22.0        2.0
1756        7.5121        24.0        2.0
955        9.8099        29.0        2.0
1720        10.229        29.0        3.0
3130        11.1025        31.0        3.0
1983        11.2217        30.0        3.0
175        13.2906        32.0        4.0
4678        13.5587        33.0        3.0
3641        13.8471        34.0        4.0
4188        16.2905        38.0        4.0
1918        17.1349        40.0        5.0
2877        17.3426        38.0        5.0
2468        18.9988        42.0        5.0
4522        20.5068        43.0        5.0
3039        21.3506        43.0        5.0
3171        22.6064        43.0        6.0
5188        23.9412        47.0        7.0
1741        24.8436        48.0        6.0
4118        24.8772        50.0        7.0
1466        25.6193        51.0        8.0
3464        25.9994        51.0        7.0
190        26.3793        50.0        6.0
133        27.5246        51.0        8.0
3310        27.7253        50.0        8.0
3838        28.1259        53.0        8.0
74        29.0305        51.0        9.0
155        29.0684        51.0        8.0
25        33.8653        62.0        13.0
3467        34.5156        60.0        13.0
4471        36.2468        64.0        12.0
5495        37.0419        65.0        17.0
5489        37.5476        62.0        15.0
3015        38.0859        62.0        15.0
932        38.7887        63.0        15.0
321        39.1206        62.0        16.0
4954        39.6102        66.0        14.0
4501        43.2024        72.0        19.0
1094        44.5054        69.0        19.0
3314        46.6523        70.0        22.0
3574        47.7115        71.0        22.0
3940        48.1701        70.0        24.0
533        49.4281        70.0        24.0
4575        49.6092        73.0        27.0
2339        49.8405        73.0        27.0
587        50.0355        72.0        25.0
3539        50.5745        73.0        28.0
4841        52.4045        76.0        28.0
5710        53.0343        74.0        29.0
1111        53.7917        75.0        30.0
4013        54.3728        73.0        27.0
269        54.9872        75.0        30.0
2158        55.2492        74.0        31.0
537        57.7536        76.0        33.0
100        57.9475        76.0        33.0
5511        58.3821        76.0        35.0
295        59.4048        76.0        34.0
4903        59.5471        76.0        33.0
2039        61.9978        76.0        31.0
3785        62.8353        76.0        33.0
5529        63.2629        76.0        33.0
2761        64.0839        76.0        36.0
5526        64.7932        76.0        39.0
3137        66.5917        76.0        41.0
5479        68.4802        76.0        39.0
4842        69.3066        76.0        43.0
5012        69.8314        76.0        46.0
4322        71.0456        76.0        45.0
5418        71.1678        76.0        47.0
4541        72.518        76.0        51.0
540        73.0616        76.0        50.0
5027        73.6871        76.0        53.0

Carson division:
Code:

Division: cars
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
254        1.0        1.0        1.0
2085        3.0159        11.0        2.0
4488        3.2319        11.0        2.0
1730        4.2967        11.0        2.0
1519        5.538        14.0        2.0
225        6.0806        15.0        2.0
1325        6.8824        16.0        2.0
5254        7.0279        17.0        2.0
1501        9.4919        23.0        2.0
3604        10.898        23.0        2.0
85        12.0917        28.0        3.0
5406        13.7255        31.0        5.0
67        13.9754        33.0        5.0
4587        15.6008        34.0        4.0
1711        15.6787        36.0        6.0
1296        15.932        37.0        5.0
999        17.1722        37.0        7.0
3547        18.2348        38.0        8.0
16        19.1887        40.0        8.0
973        20.3772        42.0        6.0
4499        23.4288        43.0        9.0
203        23.6491        46.0        10.0
246        24.698        48.0        9.0
1058        25.5109        48.0        9.0
5053        25.5549        50.0        10.0
5659        27.14        49.0        10.0
1510        27.4675        49.0        10.0
236        28.349        49.0        10.0
399        28.7179        52.0        13.0
3481        28.8591        52.0        11.0
60        28.9231        50.0        12.0
4980        30.0982        54.0        12.0
1885        33.8115        56.0        15.0
2471        34.0111        57.0        16.0
5122        35.6281        57.0        12.0
3478        35.6839        59.0        14.0
375        36.6215        59.0        17.0
93        39.2895        62.0        18.0
3339        40.4344        62.0        20.0
2521        40.6691        63.0        20.0
5549        41.1308        62.0        21.0
2377        42.6155        63.0        18.0
558        44.3918        65.0        22.0
2601        45.015        65.0        24.0
173        45.295        65.0        21.0
5416        46.5475        65.0        25.0
3506        47.486        65.0        23.0
5338        47.5041        68.0        24.0
418        48.5945        68.0        23.0
1241        50.0157        67.0        23.0
4028        50.1212        71.0        26.0
3946        51.3996        70.0        32.0
3256        51.9784        69.0        27.0
20        53.5146        70.0        31.0
1511        53.668        72.0        28.0
5625        54.7989        72.0        28.0
4574        54.9483        72.0        33.0
2534        56.1552        72.0        31.0
2075        57.533        73.0        33.0
4215        58.7857        73.0        34.0
1458        59.1456        74.0        35.0
3880        62.0953        75.0        41.0
467        62.2004        74.0        41.0
5719        65.6953        76.0        42.0
5696        66.5185        76.0        43.0
2905        67.3771        76.0        48.0
5655        67.5709        76.0        48.0
2283        67.6511        76.0        49.0
1306        68.2891        76.0        50.0
4818        68.5804        76.0        54.0
1629        69.2999        76.0        50.0
1710        69.5047        76.0        52.0
5059        70.9297        76.0        52.0
5510        70.9612        76.0        56.0
3728        75.1205        76.0        66.0
4953        75.5756        76.0        67.0

Carver division:
Code:

Division: carv
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
3419        2.2102        14.0        1.0
1986        3.5245        17.0        1.0
193        3.9434        18.0        1.0
4967        5.7247        26.0        1.0
368        5.9792        23.0        1.0
126        6.1636        23.0        1.0
4001        6.7524        26.0        1.0
329        7.3863        26.0        1.0
1024        10.7946        34.0        1.0
359        11.1298        36.0        1.0
3140        11.5817        35.0        1.0
2852        12.7099        35.0        1.0
1768        12.8963        41.0        1.0
829        14.0028        37.0        1.0
971        16.0882        42.0        1.0
3512        17.4827        42.0        2.0
66        18.713        43.0        3.0
5402        19.1513        43.0        2.0
1208        19.3593        43.0        4.0
2834        22.7598        48.0        5.0
4039        23.5241        53.0        4.0
3536        24.9202        56.0        6.0
71        25.215        56.0        6.0
172        25.5367        54.0        7.0
4911        26.1874        52.0        8.0
1717        27.0564        54.0        6.0
1592        27.3843        56.0        5.0
75        28.1822        59.0        6.0
1425        28.9182        56.0        8.0
5260        29.0438        56.0        6.0
4381        32.3542        60.0        10.0
1625        32.6885        59.0        10.0
3566        34.4215        62.0        11.0
4915        35.2377        67.0        11.0
2130        35.3071        61.0        10.0
2630        36.2086        65.0        13.0
4384        36.2847        66.0        13.0
2337        36.4334        64.0        11.0
4183        37.0672        65.0        13.0
2876        37.1205        68.0        11.0
4253        37.6184        65.0        13.0
2767        38.4558        67.0        14.0
233        41.5708        68.0        17.0
337        45.8658        72.0        16.0
216        47.7942        72.0        20.0
1868        47.9405        74.0        21.0
3504        48.1056        75.0        21.0
5437        48.15        72.0        18.0
1718        50.4801        74.0        20.0
1369        50.8188        72.0        20.0
5442        51.883        74.0        22.0
144        53.6802        75.0        24.0
585        53.7805        76.0        23.0
1884        55.1439        75.0        21.0
3352        55.1627        76.0        25.0
5431        55.1742        76.0        28.0
2648        55.9759        76.0        27.0
2491        57.796        76.0        27.0
3721        58.2749        76.0        31.0
5689        58.7006        76.0        32.0
3802        59.0146        76.0        30.0
4536        59.4786        76.0        25.0
3653        59.569        76.0        32.0
5465        60.8736        76.0        30.0
3507        63.9498        76.0        29.0
5291        65.1566        76.0        41.0
3324        66.6272        76.0        37.0
5515        67.2695        76.0        40.0
3844        67.6613        76.0        42.0
4721        67.8311        76.0        41.0
771        69.1796        76.0        41.0
4945        69.8923        76.0        44.0
128        71.5299        76.0        49.0
3881        71.9869        76.0        48.0
5458        72.3954        76.0        45.0
5546        73.7673        76.0        50.0

Hopper division:
Code:

Division: hop
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
2826        1.0503        5.0        1.0
987        3.2193        13.0        1.0
3683        3.8896        15.0        1.0
4362        4.8436        16.0        1.0
548        4.9257        18.0        1.0
33        6.1369        19.0        1.0
573        7.7273        24.0        1.0
1218        9.13        24.0        1.0
3620        10.4871        28.0        2.0
2590        10.6372        30.0        2.0
263        10.8048        33.0        1.0
469        10.9088        28.0        2.0
2614        13.7624        34.0        3.0
1676        15.3548        40.0        4.0
2512        15.8955        46.0        4.0
3735        16.6804        41.0        3.0
166        18.2162        44.0        4.0
5576        19.1331        49.0        3.0
125        19.4122        52.0        5.0
2016        21.844        57.0        6.0
2169        23.5506        52.0        6.0
343        23.9499        53.0        6.0
1124        24.4614        59.0        7.0
4391        25.6651        58.0        8.0
1723        27.473        60.0        9.0
2228        27.7726        57.0        8.0
5562        27.9529        59.0        8.0
3688        30.5388        63.0        9.0
2344        31.4592        66.0        11.0
3098        31.6559        62.0        10.0
11        33.2331        62.0        12.0
1533        33.6665        66.0        11.0
5015        33.9089        65.0        12.0
3255        33.9698        65.0        11.0
4130        34.6789        67.0        9.0
5509        36.0843        67.0        12.0
5413        36.1381        66.0        13.0
4918        37.3935        68.0        13.0
2783        37.6939        66.0        10.0
2064        40.596        68.0        14.0
78        43.7441        70.0        14.0
1746        44.453        70.0        15.0
4550        44.9409        71.0        16.0
2830        44.9785        70.0        19.0
3950        45.3123        72.0        17.0
3501        46.6799        71.0        18.0
4265        46.7277        74.0        16.0
3042        46.8192        73.0        17.0
2609        48.7305        74.0        19.0
223        49.1074        72.0        16.0
5771        50.25        73.0        19.0
103        50.7697        73.0        19.0
4405        51.5727        73.0        17.0
811        52.0624        74.0        21.0
1817        53.442        74.0        22.0
2531        54.8484        76.0        21.0
5454        56.025        75.0        23.0
4486        56.3927        75.0        25.0
1391        56.7782        76.0        25.0
5024        58.5537        76.0        26.0
5318        59.0149        76.0        27.0
2183        59.5647        76.0        23.0
781        59.9533        76.0        25.0
3266        62.2842        76.0        31.0
1796        62.3743        76.0        34.0
5428        64.2639        76.0        34.0
3939        65.0668        76.0        35.0
5118        68.0041        76.0        37.0
2500        68.5521        76.0        42.0
4329        68.6246        76.0        39.0
4930        69.3458        76.0        43.0
4731        70.1509        76.0        36.0
5493        70.8666        76.0        44.0
2530        70.9739        76.0        39.0
4799        73.8649        76.0        51.0
4589        75.0051        76.0        57.0

Tesla division:
Code:

Division: tes
Teams found: 76
Iterations: 10000
Number        AvgRank        Max        Min
624        2.753        12.0        1.0
2122        2.9871        13.0        1.0
3824        3.0106        15.0        1.0
1403        3.3736        13.0        1.0
2481        4.5837        17.0        1.0
3132        7.2504        23.0        1.0
1806        9.009        24.0        1.0
48        9.7063        25.0        1.0
2170        9.8833        25.0        1.0
2054        10.2985        27.0        1.0
1658        11.8384        28.0        1.0
2137        11.8583        26.0        1.0
2883        12.7878        28.0        1.0
1025        14.0846        30.0        2.0
2959        15.216        32.0        4.0
58        16.7812        36.0        3.0
4256        18.0007        33.0        5.0
2930        18.229        37.0        5.0
226        19.3793        39.0        5.0
1647        19.4475        41.0        5.0
3360        19.5211        39.0        6.0
2062        22.6393        42.0        6.0
3476        22.6652        46.0        5.0
1523        24.3665        45.0        9.0
1225        25.3981        46.0        7.0
3656        25.8282        48.0        8.0
358        29.2479        55.0        12.0
2960        29.8476        53.0        13.0
706        30.2083        54.0        11.0
319        31.2138        56.0        11.0
2587        31.2417        53.0        13.0
1502        31.3946        55.0        14.0
340        32.3953        58.0        13.0
4003        34.6363        61.0        17.0
2635        34.9996        60.0        15.0
1836        35.3965        61.0        15.0
4481        35.7096        63.0        14.0
292        40.6967        72.0        18.0
2415        41.4196        69.0        21.0
2191        41.7812        70.0        15.0
5415        41.9394        67.0        21.0
5072        43.6243        72.0        20.0
3250        43.6917        72.0        20.0
244        44.7466        70.0        25.0
2526        46.1086        73.0        24.0
171        46.6736        73.0        25.0
3847        47.2878        72.0        22.0
612        48.8585        72.0        26.0
141        49.7407        73.0        27.0
5006        50.8794        73.0        27.0
3941        52.4459        73.0        27.0
5627        52.5065        75.0        27.0
2658        53.3862        73.0        28.0
2613        53.6837        75.0        28.0
5314        54.1221        74.0        31.0
2399        54.8055        76.0        30.0
1311        56.4736        75.0        30.0
2059        58.2863        76.0        29.0
1255        58.6604        75.0        31.0
4050        58.774        75.0        34.0
2875        60.0987        76.0        33.0
2486        60.9733        76.0        35.0
668        61.4742        76.0        36.0
2950        62.7291        76.0        38.0
4571        63.224        76.0        38.0
5712        65.0133        76.0        35.0
5422        65.1275        76.0        36.0
3184        65.2496        76.0        39.0
2992        65.8024        76.0        36.0
5678        66.7551        76.0        39.0
1515        68.8687        76.0        44.0
1323        70.5948        76.0        42.0
1610        70.9683        76.0        44.0
5528        72.379        76.0        46.0
5730        73.6153        76.0        52.0
5582        75.3465        76.0        61.0

Once I clean up the code, I'll post the source here.

SM987 18-04-2015 23:22

Re: 2015 Championship division simulated rankings
 
Thanks, this is awesome.

Jack S. 18-04-2015 23:36

Re: 2015 Championship division simulated rankings
 
Very interesting. Thanks for the data!

Comparing the top of Tesla to the top of the other divisions is intriguing. It's the only division with no clear frontrunner by this metric. Should be fun!

MaGiC_PiKaChU 18-04-2015 23:38

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by Jack S. (Post 1473357)
Very interesting. Thanks for the data!

Comparing the top of Tesla to the top of the other divisions is intriguing. It's the only division with no clear frontrunner by this metric. Should be fun!

Definitely fun! Can't wait to play with your team!

MechEng83 18-04-2015 23:39

Re: 2015 Championship division simulated rankings
 
This is awesome!

I do have a suggestion (which also may not convey easily in words) which could be even better, but also requires more input data.

Rather than using a +/- 10 range in OPR, it would be good to use a team's standard deviation of OPR, which I guess would be related to the residuals from the OPR calculation. I don't know if this information is readily available, but it could narrow or expand the range possible, based on a team's consistency.

Just a thought.

LittleDries 18-04-2015 23:40

Re: 2015 Championship division simulated rankings
 
10000 out of 10000 iterations 254 ranks 1. Thats crazy

Nuttyman54 19-04-2015 01:42

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by LittleDries (Post 1473361)
10000 out of 10000 iterations 254 ranks 1. Thats crazy

Having an OPR of 158 will do that :rolleyes:

Spoam 19-04-2015 02:51

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by MechEng83 (Post 1473359)
This is awesome!

I do have a suggestion (which also may not convey easily in words) which could be even better, but also requires more input data.

Rather than using a +/- 10 range in OPR, it would be good to use a team's standard deviation of OPR, which I guess would be related to the residuals from the OPR calculation. I don't know if this information is readily available, but it could narrow or expand the range possible, based on a team's consistency.

Just a thought.

I had the exact same idea actually. The problem with the OPR residual, however, is that it gives you information about the accuracy of the regression with regard to each match, not each robot.

If you took the set of residuals from the matches a robot played in, it makes intuitive sense that that data should contain some level of information about that robot's deviation from their OPR. But is a data set of only 8-12 elements enough for this value to dominate the noise generated by their alliance partners' deviations (and therefore produce a meaningful standard deviation itself)? I dunno.

If some statistics wiz would like to chime in on this, I'd love to hear it.

themccannman 19-04-2015 05:16

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by Spoam (Post 1473408)
I had the exact same idea actually. The problem with the OPR residual, however, is that it gives you information about the accuracy of the regression with regard to each match, not each robot.

If you took the set of residuals from the matches a robot played in, it makes intuitive sense that that data should contain some level of information about that robot's deviation from their OPR. But is a data set of only 8-12 elements enough for this value to dominate the noise generated by their alliance partners' deviations (and therefore produce a meaningful standard deviation itself)? I dunno.

If some statistics wiz would like to chime in on this, I'd love to hear it.

The problem with trying to use variation or standard deviation with OPR is that the number it spits out pretty much just tells you what their match schedule was like. OPR is already a calculation of how much an alliances score tends to change when certain teams are playing, calculating standard deviation for that basically just going backwards. OPR tries to determine how one robot affects an alliances score, where as SD (with unique alliances) would give you how each alliance affected that robots score.

Unfortunately it's not very useful unless you have actual scouted data for each team to use, in which case you can make much more accurate predictions about rankings. Our scouting system had a little less than an 80% success rate guessing the winners of each match in our division the last two years, and those games were very defense heavy. I would bet on this system approaching a 95% success rate guessing match results this year since the game is much more consistent.

Lidor51 19-04-2015 07:36

Re: 2015 Championship division simulated rankings
 
Very intersting, I like this idea. One problem I can see is that there are some teams that their last regional was early in the season (week 1-3), and I think the OPR of those teams won't represent the amount of points they will score at the Championship (they got a lot of time to practice, but it wasn't in an official competition so there isn't any recorded data of their improvement).

Quote:

Originally Posted by themccannman (Post 1473416)
The problem with trying to use variation or standard deviation with OPR is that the number it spits out pretty much just tells you what their match schedule was like. OPR is already a calculation of how much an alliances score tends to change when certain teams are playing, calculating standard deviation for that basically just going backwards. OPR tries to determine how one robot affects an alliances score, where as SD (with unique alliances) would give you how each alliance affected that robots score.

Unfortunately it's not very useful unless you have actual scouted data for each team to use, in which case you can make much more accurate predictions about rankings. Our scouting system had a little less than an 80% success rate guessing the winners of each match in our division the last two years, and those games were very defense heavy. I would bet on this system approaching a 95% success rate guessing match results this year since the game is much more consistent.

Pretty high percentages. Can you tell more about the system? What data it's based on, and what are the calculations it does?

MechEng83 19-04-2015 08:15

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by Spoam (Post 1473408)
I had the exact same idea actually. The problem with the OPR residual, however, is that it gives you information about the accuracy of the regression with regard to each match, not each robot.

If you took the set of residuals from the matches a robot played in, it makes intuitive sense that that data should contain some level of information about that robot's deviation from their OPR. But is a data set of only 8-12 elements enough for this value to dominate the noise generated by their alliance partners' deviations (and therefore produce a meaningful standard deviation itself)? I dunno.

If some statistics wiz would like to chime in on this, I'd love to hear it.

Quote:

Originally Posted by themccannman (Post 1473416)
The problem with trying to use variation or standard deviation with OPR is that the number it spits out pretty much just tells you what their match schedule was like. OPR is already a calculation of how much an alliances score tends to change when certain teams are playing, calculating standard deviation for that basically just going backwards. OPR tries to determine how one robot affects an alliances score, where as SD (with unique alliances) would give you how each alliance affected that robots score.

Unfortunately it's not very useful unless you have actual scouted data for each team to use, in which case you can make much more accurate predictions about rankings. Our scouting system had a little less than an 80% success rate guessing the winners of each match in our division the last two years, and those games were very defense heavy. I would bet on this system approaching a 95% success rate guessing match results this year since the game is much more consistent.

Good points. Thanks for pointing out the flaw in my idea. what I surmise is that this calculation of stdev would be marginally useful at best. This reminds me of a mantra I hear at work quite often: "All models are wrong. Some models are useful."

tr6scott 19-04-2015 09:49

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by Lidor51 (Post 1473420)
Very intersting, I like this idea. One problem I can see is that there are some teams that their last regional was early in the season (week 1-3), and I think the OPR of those teams won't represent the amount of points they will score at the Championship (they got a lot of time to practice, but it wasn't in an official competition so there isn't any recorded data of their improvement).

So can you curve fit the the overall week to week improvement in OPR of the population, and then use that to bias the random factor up for these teams.

Our data for TORC is from Week 7 MSC, so our random is the standard +-10, but team X, data is from week 3 and we know since week OPR overall saw a 20% increase (for example, not actual data) so let the random from team X range from +12 to -8...

Or we could just play the match next week. :)

CVR 19-04-2015 10:46

Re: 2015 Championship division simulated rankings
 
I think that your calculation method, which is essentially the following:

Red score = Red1_OPR + Red2_OPR + Red3_OPR

Greatly overestimates qual scores.

I think it might be more accurate to seperate the co-op and auto scores from OPR. In a single match, only one team can do co-op, and only one team can do auto (not entirely true, but pretty close). By counting all 3 team's auto and co-op scores, you're triple-weighting those scores.
Example: Qual 24 has three red teams, each of which have a co-op OPR of 20 (100% consistent 3 tote stack) and an auto OPR of 40 (100% consistent co-op). However, their tote, RC, and litter OPRs are each zero, for a total OPR for each team of 60. The score for this match would be 60, as they would get one auto stack and complete co-op. However, your method predicts the score being 180 points. That's an extreme example, but it illustrates the issue well.
I think a better method would be to use the following:

Red Score =
Red1_(toteOPR + binOPR + litterOPR)
+ Red2_(toteOPR + binOPR + litterOPR)
+ Red3_(toteOPR + binOPR + litterOPR)
+ MAX(Red1_autoOPR, Red2_autoOPR, Red3_autoOPR)
+ MAX(Red1_coopOPR, Red2_coopOPR, Red3_coopOPR)

I think that method, while slightly more complex, will give more accurate results.

Joe Ross 19-04-2015 13:21

Re: 2015 Championship division simulated rankings
 
What probability distribution did you use for the random terms?

Citrus Dad 19-04-2015 13:35

Re: 2015 Championship division simulated rankings
 
Quote:

Originally Posted by CVR (Post 1473448)
I think that your calculation method, such is essentially the following:

Red score = Red1_OPR + Red2_OPR + Red3_OPR

Greatly overestimates qual scores.

I think it might be more accurate to seperate the co-op and auto scores from OPR. In a single match, only one team can do co-op, and only one team can do auto (not entirely true, but pretty close). By counting all 3 team's auto and co-op scores, you're triple-weighting those scores.
Example: Qual 24 has three red teams, each of which have a co-op OPR of 20 (100% consistent 3 tote stack) and an auto OPR of 40 (100% consistent co-op). However, their tote, RC, and litter OPRs are each zero, for a total OPR for each team of 60. The score for this match would be 60, as they would get one auto stack and complete co-op. However, your method predicts the score being 180 points. That's an extreme example, but it illustrates the issue well.
I think a better method would be to use the following:

Red Score =
Red1_(toteOPR + binOPR + litterOPR)
+ Red2_(toteOPR + binOPR + litterOPR)
+ Red3_(toteOPR + binOPR + litterOPR)
+ MAX(Red1_autoOPR, Red2_autoOPR, Red3_autoOPR)
+ MAX(Red1_coopOPR, Red2_coopOPR, Red3_coopOPR)

I think that method, while slightly more complex, will give more accurate results.

I concur this is correct method. However, it's also important this year to use the Max OPR, not average, as teams improved dramatically through the season. I've got a message into Ed Law on a method to extract the Max Auto and Coop OPRs from this database.


All times are GMT -5. The time now is 11:37.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi