View Single Post
  #14   Spotlight this post!  
Unread 12-08-2012, 12:05
Ian Curtis Ian Curtis is offline
Best Available Data
FRC #1778 (Chill Out!)
Team Role: Engineer
 
Join Date: Feb 2005
Rookie Year: 2004
Location: Puget Sound
Posts: 2,521
Ian Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond reputeIan Curtis has a reputation beyond repute
Re: Coefficient of Friction Testing

Quote:
Originally Posted by DonRotolo View Post
John,

We don't calculate the CoF. If we need to know, we test relative to some other standard (i.e., another robot) by pushing it along carpet and measuring force - sometimes with 'calibrated legs' only.

Your method is valid for static friction, but dynamic friction is also important IMHO, since once you start moving the value is usually quite different from static friction (= Sticktion). To measure that in your test setup, you lift to just below your normal angle, set the robot sliding, then reduce the angle to where it stops. This was very important to us in Lunacy, for example, where the wheels were generally not at rest relative to the surface.
Probably the 'interlocking' of the soft, rough sponge with the smooth-but-not-as-smooth-as-you-think wood. Get a particularly strong splinter of wood, and it grips more than if you only get weak (or short) ones.
Fun question: Is dynamic friction a constant with respect to velocity? I know a Physics 101 textbook will tell you it is, but I wonder if you ask a tribology (isn't that a fun word) expert about the dynamics of tread on carpet what the answer is. Or if anyone has ever tested it?

That is, do you have the same coefficient of friction with a tire sliding at 1 ft/s as you do with a tire sliding at 10 ft/s.
__________________
CHILL OUT! | Aero Stability & Control Engineer
Adam Savage's Obsessions (TED Talk) (Part 2)
It is much easier to call someone else a genius than admit to yourself that you are lazy. - Dave Gingery