View Single Post
  Spotlight this post!  
Unread 16-08-2013, 09:15
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,044
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: NI Week Athena Announcement and Q&A Panel

Quote:
Originally Posted by jhersh View Post
The LabVIEW programming experience is the same. You will not need to do anything special to deal with multiple cores.
Excerpt from "Under the Hood of NI Linux Real-Time":
It’s also important to note that performance degradation can occur in both time critical and system tasks on multicore systems running NI Linux Real-Time if serially dependent tasks are allowed to run in parallel across processor cores. This is because of the inefficiency introduced in communicating information between the serially dependent tasks running simultaneously on different processor cores. To avoid any such performance degradation, follow the LabVIEW Real-Time programming best practice of segregating time-critical code and system tasks to different processor cores. You can accomplish this by setting a processor core to only handle time-critical functions, and specify the processor core to be used by any Timed Loop or Timed Sequence structure as illustrated in Figure 4. You can learn more about the best practices in LabVIEW Real-Time for optimizing on multicore systems at Configuring Settings of a Timed Structure.
Is the above something that teams need to be aware of and take into account in their programming efforts?


Reply With Quote