View Single Post
  #6   Spotlight this post!  
Unread 02-10-2013, 11:06
Mike Bortfeldt Mike Bortfeldt is offline
Registered User
FRC #1126 (& 1511)
Team Role: Mentor
 
Join Date: Oct 2004
Rookie Year: 2004
Location: Rochester, NY
Posts: 119
Mike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud ofMike Bortfeldt has much to be proud of
Re: Plotting Location w/ Accellerometer Project

While not accelerometer related, there have been a number of posts over the years describing issues with the "drift" associated with gyros over time and the error this causes when calculating field position. One method I've experimented with that seems to work well to compensate/eliminate most of this error utilizes two gyros. A high rate gyro for most turns (250 to 500 deg/sec), and a low rate gyro (30 deg/sec) for higher accuracy in slow curves and determining when the robot is stationary (for zero compensation). With the higher resolution of the low rate gyro, it is much easier to determine when you can automatically adjust the zero point. This method does break down when the robot is in continuous motion, but typically there are periods of time within a match (and certainly before the match starts), where the gyro can update its zero point. During bench testing, I was able to achieve a heading drift of under 2 degrees per hour when stationary. The heading calculation algorithm would automatically switch between the gyros at a 20 deg/sec rate (67% of full scale of the low rate gyro).

Mike
Reply With Quote