
07-10-2013, 19:48
|
 |
systems engineer (retired)
no team
|
|
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,088
|
|
|
Re: calculating position using follower wheels
Quote:
Originally Posted by RyanCahoon
Spoiler for 5a:
T=0: (0,0) pi/12 (from +Y axis)
F(t) = 5*sin(t/2)
S(t) = 4*sin(t/2.2)
dQ = 1.5*sin(t/2.5)
Q(t) = (Integrate[1.5*Sin[t/2.5], t, 0, t]) + Pi/12 = 4.0118-3.75*Cos[0.4*t]
T=30:
dX(t) = F(t)*Sin[Q(t)]+S(t)*Cos[Q(t)]
X = Integrate[dX(t), t, 0, 30]
= Integrate[5*Sin[t/2]*Sin[4.0118-3.75*Cos[0.4*t]] + 4*Sin[t/2.2]*Cos[4.0118-3.75*Cos[0.4*t]], t, 0, 30]
= -5.94429
dY(t) = F(t)*Cos[Q(t)]-S(t)*Sin[Q(t)]
y = Integrate[dY(t), t, 0, 30]
= Integrate[5*Sin[t/2]*Cos[4.0118-3.75*Cos[0.4*t]] - 4*Sin[t/2.2]*Sin[4.0118-3.75*Cos[0.4*t]], t, 0, 30]
= -9.11027
|
Nice work too. You guys rock.
|