View Single Post
  #23   Spotlight this post!  
Unread 17-08-2014, 18:33
DampRobot's Avatar
DampRobot DampRobot is offline
Physics Major
AKA: Roger Romani
FRC #0100 (The Wildhats) and FRC#971 (Spartan Robotics)
Team Role: College Student
 
Join Date: Jan 2012
Rookie Year: 2010
Location: Stanford University
Posts: 1,277
DampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond repute
Re: paper: Driving a Robot — Fastest Path from A to B

Quote:
Originally Posted by Mr. N View Post
Ha! Agreed!

Thanks very much for the detailed answer. Great work!

One thing: The acceleration limit you used (10 ft/s/s) may be little low. Based on our speed trials, we were getting something more like 22 ft/s/s (Supershifter, hi-speed gear).

I worked up a similar example using the math from my paper (I probably should have included this in the paper itself). I used a 25x25 foot path with a similarly shaped curve. I set my upper speed at 10ft/s and robot wheel base to 2 ft.

Although I don't take acceleration into account, keep in mind that (a) the path is long enough that the effects of acceleration are minimized, and (b) both the linear and curved path benefit from the "instantaneous" acceleration assumption -- they are both slightly faster than real life, by about the same amount.

Here are my results:

- Turn-Straight-Turn: 3.69 seconds, total arc length = 35.36 feet, total heading adjustment = 90 degrees

- Curve: 4.00 seconds, total arc length = 37.79, total heading adjustment = 126 degrees

The curved path takes 8.3% (or 0.31 seconds) longer to execute.

Although this doesn't sound like a lot, over 6 scoring cycles, that 1.84 seconds --- almost 2 seconds from optimizing just one part of a path.
For this simulation, are you taking into account the time needed to turn, or assuming that the robot starts and ends on the same heading it travels?
__________________
The mind is not a vessel to be filled, but a fire to be lighted.

-Plutarch
Reply With Quote