Here's a golfed version of the solution i came up with, ill neaten it up in a second
(2*sqrt(z^2+a^2)*sin(90-arcsin(a/sqrt(z^2+a^2))))/sin(180-(90-arcsin(a/sqrt(a^2+(z-y)^2))+180-(180-(180-arcsin(a/sqrt(a^2+(z-y)^2))+arcsin(a/sqrt(z^2+a^2)))+arcsin((bsin(180-(180-arcsin(a/sqrt(a^2+(z-y)^2))+arcsin(a/sqrt(z^2+a^2)))))/(y)))))
E/ i just noticed that I accidentally wrote o instead of sin(o) when i golfed this code.... woooooooooooooooops
2e/ pay no attention to the golfed version above
3e/ fixed the golfed version. ignore the 180-180-180-...
where
y=DR
z=DL
a=OL
b=DE/DF
e/ explanation (i know i accidentally used "b" twice, in the expalantion "b" will be marked as "#")
b (OD) = sqrt(z^2+a^2)
c (<ODL)= arcsin(a/b)
d (<DOL)= 90-c
e (OR) = sqrt(a^2+(z-y)^2)
f (<ORL)= arcsin(a/e)
g (<ROL) = 90-f
h (<DRO)= 180-f
i (<DOR) = 180-(h+c)
//temporary stepping out of alphabetical order
l (DF) = b^2 + e^2 - 2*b*e*cos(i)
//back again
j (<DFO)= arcsin((bsini)/(l))
k (<ODF)= 180-(i+j)
m (DE) = #L
n (<DOC)= 90-C
o (<DCO) = 180-(g+k)
sin(n)/x = sin(o)/b :: 1/x = sin(o)/bsin(n) :: x = bsin(n)/sin(o) ::
solution = 2 * DO * sin(<DOC)/sin(<DCO)
Quote:
|
She's a Dean's List Winner and couldn't give me an answer after 3 hours of staring at the whiteboard!
|
Dean's List winner doesn't necessarily mean a math whiz... most of our deans list entries aren't mathletes (except for our 2012 entry, who won at MSC)