Thread: Drive Systems
View Single Post
  #24   Spotlight this post!  
Unread 08-04-2015, 00:15
Chris is me's Avatar
Chris is me Chris is me is offline
no bag, vex only, final destination
AKA: Pinecone
FRC #0228 (GUS Robotics); FRC #2170 (Titanium Tomahawks)
Team Role: Mentor
 
Join Date: Dec 2008
Rookie Year: 2006
Location: Glastonbury, CT
Posts: 7,696
Chris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond repute
Send a message via AIM to Chris is me
Re: Drive Systems

Quote:
Originally Posted by dougwilliams View Post
My team typically uses mecanum, and we are starting an off-season drivetrain. We understand most but can't see / make sense of some of the omni based drivetrains.

http://www.vexrobotics.com/vexpro/examples-guides

What are the pros and cons of this 2+2 drivetrain? Why only go two omnis vs 4? I could imagine some scrub reduction, but why not all 4 wheels? And if you are using 4 independent gearboxes, why couple each side with belts/chains? Are they trying to mechanically couple and equalize wheel speed per side?
There are a few pros to having two traction wheels in a setup like this. The biggest thing is that you retain some amount of tractive force for pushing matches - while omni wheels have some forward traction, most traction wheels have more, so you'll still be able to push with a 2+2 setup. The second is that your turning center is usually directly between the two traction wheels. There is, theoretically, *no* scrub in a 2+2 wheel drivetrain, because the omni wheels are the only wheels sliding laterally at all. The traction wheels become the point of rotation for the system.

The pros to belting the two gearboxes together on each side have less to do with speed and more to do with motor load. It's most obviously useful in a pushing match, but any time that your CG isn't perfectly centered it provides some benefit. Consider the extreme case where you're trying to push a robot, but your omni wheels leave the ground. This means your traction wheels can only push with 2 CIMs of mechanical power. If the wheels are belted together, you get the force of all 4 CIMs on those wheels. This same principle applies when all four wheels are touching the ground, but the force on each wheel is not even, such as when the CG of the robot is closer to one set of wheels than the other set. Essentially it lets the mechanical power of each motor go to where its most needed. It also gives the drivetrain a little redundancy, but that's not really why it's done in most cases.

Quote:
Then we were looking at 1114's 2014 robot, and it looks like 4 wheel traction, but two wheels have butterfly like modules where you can drop omnis on one side (not sure if it was the front or back). Similar to the above, is temporarily reducing scrub important enough to add that weight?
It's a six wheel traction drive, with dropped center wheels. The drive behaves as a 4WD effectively, as the dropped center wheel raises one end of the robot slightly, but with a short enough wheelbase that the robot can still turn on a dime.

The reason for the drop down omni wheels (which I believe are unpowered) is not quite obvious, but it has to do with the mechanics of a high traction drive in a pushing match between two robots with compressible bumpers and rough fabric. This may sound like an extremely specific edge case, and it is very specific to FRC, but it's a real issue. You can T-bone pin a 6WD robot by pushing it hard on the center of its long side. The combination of the direction of pushing force, the two robot bumpers compressing into each other, and the friction caused by the compressed bumpers will result in the defended robot being virtually unable to escape. The drop down omni wheels change the center of rotation for the robot from the center to an extreme end, as the robot temporarily becomes 2 traction 2 omni, and the robot is able to spin free without pushing into the compressed bumper. Or, more likely, the T-bone robot continues to push as the module goes down, spinning 1114's robot out of the pin for them.
__________________
Mentor / Drive Coach: 228 (2016-?)
...2016 Waterbury SFs (with 3314, 3719), RIDE #2 Seed / Winners (with 1058, 6153), Carver QFs (with 503, 359, 4607)
Mentor / Consultant Person: 2170 (2017-?)
---
College Mentor: 2791 (2010-2015)
...2015 TVR Motorola Quality, FLR GM Industrial Design
...2014 FLR Motorola Quality / SFs (with 341, 4930)
...2013 BAE Motorola Quality, WPI Regional #1 Seed / Delphi Excellence in Engineering / Finalists (with 20, 3182)
...2012 BAE Imagery / Finalists (with 1519, 885), CT Xerox Creativity / SFs (with 2168, 118)
Student: 1714 (2009) - 2009 Minnesota 10,000 Lakes Regional Winners (with 2826, 2470)
2791 Build Season Photo Gallery - Look here for mechanism photos My Robotics Blog (Updated April 11 2014)

Last edited by Chris is me : 08-04-2015 at 00:21.