View Single Post
  #7   Spotlight this post!  
Unread 22-12-2015, 11:01
Chris is me's Avatar
Chris is me Chris is me is offline
no bag, vex only, final destination
AKA: Pinecone
FRC #0228 (GUS Robotics); FRC #2170 (Titanium Tomahawks)
Team Role: Mentor
 
Join Date: Dec 2008
Rookie Year: 2006
Location: Glastonbury, CT
Posts: 7,587
Chris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond repute
Send a message via AIM to Chris is me
Re: pic: Octocanum Module

It's super great that you've decided to teach yourself CAD and have worked on original designs just a few weeks into it. Good for you, keep doing that.

That said, this design might need some work, and building a cantilevered octacanum module like this is a somewhat complex endeavor that is probably not the best first design project for someone new to this stuff.

The "double cantilever" of supporting a drive module cantilevering off of an already cantilevered shaft can put some weird and strong bending moments on the drive shaft that it may not be ready to support. Specifically when a robot is pushing you from the side (or to a lesser extent, when you're strafing) - there's a real danger in bending the shaft this way and you'll want to be really careful.

For "west coast" drop drive modules like this, I've always been more comfortable with a design that straddles the drive tube, rather than hanging off of it. You can add some low friction plastic blocks between the module and the frame so that if the module deflects under load, the forces are transmitted to the frame rather than the axle supporting the module, and even if the axle supporting the module takes some load, it will be on both sides of the tube very close to the side walls which is a lot better of a loading condition. The Vex drop modules do this for good reason; they are a good starting point for a design.

If you are going to face mount the piston then using it only to push the module down is the correct choice. If you couple the piston to the module but rigid mount it on one end, you put a bending moment on the piston, which is bad news bears and just unnecessary. You'll have to pivot mount the piston on both ends if you want it to provide the up-lifting force to hold the mecanum off the ground, which is a lot more of a pain than just throwing a torsion spring on there.

If you're using 1/8" plates for the module, I would just get rid of the lightening altogether. The pattern you have has a web that is too thin to do anything in the middle and it gets dangerously close to those bolt holes. The lightening saves you maybe like a quarter pound per module?

Can you make the mecanum wheel a dead axle wheel? This way you can use the axle as a structural member and you get some "free" rigidity.

Overall, a good start!
__________________
Mentor / Drive Coach: 228 (2016-?)
...2016 Waterbury SFs (with 3314, 3719), RIDE #2 Seed / Winners (with 1058, 6153), Carver QFs (with 503, 359, 4607)
Mentor / Consultant Person: 2170 (2017-?)
---
College Mentor: 2791 (2010-2015)
...2015 TVR Motorola Quality, FLR GM Industrial Design
...2014 FLR Motorola Quality / SFs (with 341, 4930)
...2013 BAE Motorola Quality, WPI Regional #1 Seed / Delphi Excellence in Engineering / Finalists (with 20, 3182)
...2012 BAE Imagery / Finalists (with 1519, 885), CT Xerox Creativity / SFs (with 2168, 118)
Student: 1714 (2009) - 2009 Minnesota 10,000 Lakes Regional Winners (with 2826, 2470)
2791 Build Season Photo Gallery - Look here for mechanism photos My Robotics Blog (Updated April 11 2014)
Reply With Quote