View Single Post
  #14   Spotlight this post!  
Unread 18-11-2016, 14:08
Chris is me's Avatar
Chris is me Chris is me is offline
no bag, vex only, final destination
AKA: Pinecone
FRC #0228 (GUS Robotics); FRC #2170 (Titanium Tomahawks)
Team Role: Mentor
 
Join Date: Dec 2008
Rookie Year: 2006
Location: Glastonbury, CT
Posts: 7,601
Chris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond repute
Send a message via AIM to Chris is me
Re: 3D Printed Parts on an FRC Robot?

3D printed parts are absolutely valid in FRC, it's just a matter of knowing when and where to use them, and how to design and manufacture them such that they do not see excessive loading.

Printing is particularly useful in FRC:

- When parts don't see significant load. 3D printed parts can be used with load as well, but that requires more active effort or reinforcement.

- When you need a specific geometry of part that is a pain to make through other methods. Things like electronics brackets, camera mounts, eccentric spacers, gearbox shields, even internal ball cradles can be printed to easily achieve a specific size and shape.

- When your other manufacturing resources are tied up, or needed for more valuable things. Spacers and standoffs are a common 3D printed part, not because the technology is required for it, but because the 3D printer has more downtime than the lathe and these parts are just boring to make by hand.

- When you are stuck in CAD at 2 AM trying to interface two internal assemblies and need to bridge some oddly specific gap between two parts. Personal experience on this one.

Honestly, if you get and have a printer, you'll find ways to use it. You can even make composites out of it, using the 3d printed geometry for shape and adding metal components for structure. It's just too handy.
__________________
Mentor / Drive Coach: 228 (2016-?)
...2016 Waterbury SFs (with 3314, 3719), RIDE #2 Seed / Winners (with 1058, 6153), Carver QFs (with 503, 359, 4607)
Mentor / Consultant Person: 2170 (2017-?)
---
College Mentor: 2791 (2010-2015)
...2015 TVR Motorola Quality, FLR GM Industrial Design
...2014 FLR Motorola Quality / SFs (with 341, 4930)
...2013 BAE Motorola Quality, WPI Regional #1 Seed / Delphi Excellence in Engineering / Finalists (with 20, 3182)
...2012 BAE Imagery / Finalists (with 1519, 885), CT Xerox Creativity / SFs (with 2168, 118)
Student: 1714 (2009) - 2009 Minnesota 10,000 Lakes Regional Winners (with 2826, 2470)
2791 Build Season Photo Gallery - Look here for mechanism photos My Robotics Blog (Updated April 11 2014)
Reply With Quote