View Single Post
  #12   Spotlight this post!  
Unread 24-11-2016, 01:43
GeeTwo's Avatar
GeeTwo GeeTwo is offline
Technical Director
AKA: Gus Michel II
FRC #3946 (Tiger Robotics)
Team Role: Mentor
 
Join Date: Jan 2014
Rookie Year: 2013
Location: Slidell, LA
Posts: 3,564
GeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond repute
Re: Pneumatics Math Help

Not meaning to contradict any of the notes above, but in designing such a joint, I find it convenient to first look at the amount of work to be done. In the case of the 90 degree rotating arm, this would be π/4 (90 degrees in radians) * arm length * [average] force required at end of arm. The result will be in ft-lb or N-m, or other similar units. Then, divide this amount of work by the working pressure on the cylinder (perhaps 50 lb / in2) which is the smallest possible displacement (that is, area times stroke) to do this amount of work. Don't forget to convert feet to inches!

Multiply this minimum displacement by a nice safety factor (1.5 if you don't mind the stroke being rather stately, or perhaps 5 to 10 if you want fast action). This will allow you to come up with a fairly small set of reasonable "stock" cylinders. If you use Bimba cylinders, the "power factor" (first two digits of original line cylinders part number) is the area of the piston in tenths of a square inch, and the remainder is the stroke length, so to calculate the displacement of a Bimba cyldinder, just multiply power factor * stroke / 10. (Example: an SR 1715 cylinder's displacement is 17 * 15 / 10 = 25.5 in3.)

THEN, for each candidate cylinder, figure out the appropriate mount points. Shorter, thicker cylinders will mount closer to the pivot but will require larger forces, possibly meaning thicker plates and bolts and certainly better precision. Longer, thinner cylinders will mount further from the pivot (requiring more maneuvering room), but the forces will be smaller and probably more reliable, especially if your manufacturing is subject to error.
__________________

If you can't find time to do it right, how are you going to find time to do it over?
If you don't pass it on, it never happened.
Robots are great, but inspiration is the reason we're here.
Friends don't let friends use master links.
Reply With Quote