View Single Post
  #2   Spotlight this post!  
Unread 16-12-2016, 11:52
Chris is me's Avatar
Chris is me Chris is me is offline
no bag, vex only, final destination
AKA: Pinecone
FRC #0228 (GUS Robotics); FRC #2170 (Titanium Tomahawks)
Team Role: Mentor
 
Join Date: Dec 2008
Rookie Year: 2006
Location: Glastonbury, CT
Posts: 7,601
Chris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond reputeChris is me has a reputation beyond repute
Send a message via AIM to Chris is me
Re: Understanding WCP Drive Train Calculator

Quote:
Originally Posted by Oblarg View Post
One major flaw of the WCP drive calculator that you should take note of: the "max pushing force" and "max current draw" calculations both use static wheel COF instead of dynamic. This is very misleading, as if you're actually traction-limited, you'll be spinning the wheels and the static COF only matters for a moment until the wheels slip. So, if you're trying to see if your current draw in a pushing match is sustainable without tripping a breaker, the numbers they give are not correct.
This isn't quite as black and white as you make it out to be.

Three cases to consider:
1. Less than your maximum pushing force is required to displace whatever you are pushing. In this case, your wheels don't slip, they start moving before that happens.
2. More than your maximum pushing force is required. You're already not pushing them, whatever. In fact once you start to slip you'll draw slightly less current than the max!
3. Right on the borderline. Behavior varies around here; the winner of the pushing match if head to head is usually who carried more momentum into the push.

The bigger deal that isn't modeled is the effects of voltage drop under load on pushing force and current draw. This is significant.

I think it's plenty reasonable to model at static CoF - unless you have a low gear that's mega low and you're pushing boulders (grippy boulders, made of rock, not foam), your wheels probably won't slip before you move anyway.
__________________
Mentor / Drive Coach: 228 (2016-?)
...2016 Waterbury SFs (with 3314, 3719), RIDE #2 Seed / Winners (with 1058, 6153), Carver QFs (with 503, 359, 4607)
Mentor / Consultant Person: 2170 (2017-?)
---
College Mentor: 2791 (2010-2015)
...2015 TVR Motorola Quality, FLR GM Industrial Design
...2014 FLR Motorola Quality / SFs (with 341, 4930)
...2013 BAE Motorola Quality, WPI Regional #1 Seed / Delphi Excellence in Engineering / Finalists (with 20, 3182)
...2012 BAE Imagery / Finalists (with 1519, 885), CT Xerox Creativity / SFs (with 2168, 118)
Student: 1714 (2009) - 2009 Minnesota 10,000 Lakes Regional Winners (with 2826, 2470)
2791 Build Season Photo Gallery - Look here for mechanism photos My Robotics Blog (Updated April 11 2014)
Reply With Quote