Quote:
|
Originally Posted by dk5sm5luigi
How about this proof:
given: e^(i * pi) = -1
e^(3 * i * pi) = e^(i * pi) * e^(i * pi) * e^(i * pi) = -1 * -1 * -1 = -1
therefore:
e^(i * pi) = e^(3 * i * pi)
ln e^(i * pi) = ln e^(3 * i * pi)
(i * pi) ln e = (3 * i * pi) ln e
i * pi = 3 * i * pi
1 = 3
|
major probelm: you cannot take the ln of a negative number. therefore, the term ln e^(i * pi) cannot exist. i have another one of those phony proofs, its kinda fun:
let a=1, b=1
a = a
a^2 = ab
a^2 - b^2 = ab - b^2
(a + b)(a - b) = b(a - b)
a + b = b
1 + 1 = 1
have fun =D