View Single Post
  #5   Spotlight this post!  
Unread 02-06-2005, 13:54
ImmortalAres ImmortalAres is offline
Registered User
no team
 
Join Date: May 2005
Location: Clarkson University
Posts: 33
ImmortalAres is an unknown quantity at this point
Re: Accelerometer code

ok, based on kevin's response i'm clearly missing something with the interrupts
being called. here's the code

i'm using htis accelerometer

http://www.analog.com/UploadedFiles/...DXL202EB_a.pdf



Code:
/*
*Alpha 1 for accelerometer
*	//accelerometer has pwm frequencies of 263.158 Hz (3.8 ms) (we thought)
*
*/


#include "myaccelerometer.h"
#include "ifi_aliases.h"
#include "ifi_default.h"
#include "ifi_picdefs.h"

volatile int xacceleration;
volatile int yacceleration;
unsigned int Clock = 0;	// upper 16 bits of the 32 bit system clock
						// timer 1 contains the lower 16 bits
						// each clock tick is worth 26.21 milliseconds


void Initialize_Accelerometer(void)
{
	// initialize and start timer 1
	Initialize_Timer_1();


/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
	// initialize external interrupts 3-6 (KBI0 - KBI3 on user 18F8520)
	TRISBbits.TRISB4 = 1;		// make sure RB4/KBI0 is setup as an input [108]
	TRISBbits.TRISB5 = 1;		// make sure RB5/KBI1 is setup as an input [108]


	INTCON2bits.RBIP = 0;		// interrupts 3 through 6 will use the low priority interrupt [90]
	INTCONbits.RBIE = 1;		// enable interrupts 3 through 6 [89]
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////

}

int Get_xAcceleration(void)//called from user level to get current calculated x acceleration value
{
	int temp_xacceleration;

	//disable timer 1 interrupt
	PIE1bits.TMR1IE = 0;

	temp_xacceleration = xacceleration;

	//timer 1 interrupt back on
	PIE1bits.TMR1IE = 1;

	// Return the x acceleration to the caller.
	return(temp_xacceleration);
}

int Get_yAcceleration(void)//called from user level to get current calculated y acceleration value
{
	int temp_yacceleration;

	//disable timer 1 interrupt
	PIE1bits.TMR1IE = 0;

	temp_yacceleration = yacceleration;

	//timer 1 interrupt back on
	PIE1bits.TMR1IE = 1;

	// Return the y acceleration to the caller.
	return(temp_yacceleration);
}


void Initialize_Timer_1(void)
{


/////////////////////////////////////////////////////////////////////////////////////////////////////
	// initialize and start timer 1
	IPR1bits.TMR1IP = 0;		// timer 1 will use the low priority interrupt [98]
	PIE1bits.TMR1IE = 1;		// enable timer1 roll-over interrupt [95]
	T1CONbits.RD16 = 1;			// use 16-bit read/write operations with timer 1 [135]
	T1CONbits.T1CKPS0 = 0;		// timer 1 clock will use a 4:1 prescale value [135]
	T1CONbits.T1CKPS1 = 1;
	T1CONbits.T1OSCEN = 0;		// turn-off the timer 1 oscillator to save power [135]
	T1CONbits.TMR1CS = 0;		// timer 1 will use the internal 10MHz clock [135]
	T1CONbits.TMR1ON = 1;		// start timer 1 [135]
////////////////////////////////////////////////////////////////////////////////////////////////////
	
}

void Timer_1_Int_Handler(void)
{
	
	Clock++; // increment the upper 16-bits of the system clock

}



void Int_3_Handler(unsigned char RB4_State)	  //parts of this provided by K. Watson from JPL who helps out FIRST teams with code
												//it appeared as help for pwm input for an infrared tracking device
{
	unsigned char tempbuf; // temporary data buffer
	unsigned int Int_3_Period; // pulse-width period
	unsigned int Int_3_Up_Edge_Count_Low; // lower 16-bits of the rising-edge time snapshot
	unsigned int Int_3_Up_Edge_Count_High; // upper 16-bits of the rising-edge time snapshot
	static unsigned int Int_3_Down_Edge_Count_Low; // lower 16-bits of the falling-edge time snapshot
	static unsigned int Int_3_Down_Edge_Count_High; // upper 16-bits of the falling-edge time snapshot

	switch(RB4_State) // current state determines how the function behaves
	{
	case 0: // falling-edge detected (beginning of the pulse)
		Int_3_Down_Edge_Count_High = Clock; // get a snapshot of the time
		tempbuf = TMR1L; // TMR1L must be read before TMR1H
		Int_3_Down_Edge_Count_Low = TMR1H;
		Int_3_Down_Edge_Count_Low <<= 8;
		Int_3_Down_Edge_Count_Low += tempbuf;
		break; // now wait for the rising-edge interrupt to happen...

	case 1: // rising-edge detected (end of the pulse)
		Int_3_Up_Edge_Count_High = Clock; // get a snapshot of the time
		tempbuf = TMR1L;
		Int_3_Up_Edge_Count_Low = TMR1H;
		Int_3_Up_Edge_Count_Low <<= 8;
		Int_3_Up_Edge_Count_Low += tempbuf;
		
		// determine the pulse-width period by determining the time 
		// difference between the falling-edge and rising-edge interrupts
		if (Int_3_Up_Edge_Count_High == Int_3_Down_Edge_Count_High)
		{
			// this is quicker because the 16-bit system clock hasn't changed and therefore has no effect on the outcome
			Int_3_Period = Int_3_Up_Edge_Count_Low - Int_3_Down_Edge_Count_Low;
		}	
		else
		{
		//this works because the pulse-width will always be less than one clock tick(= 65536 timer ticks)
		//(=0.0000001 seconds) 1 * 10^-7 sec (0.1 micro seconds)
			Int_3_Period = 65536 - Int_3_Down_Edge_Count_Low + Int_3_Up_Edge_Count_Low;
		}		
		break; // now wait for another falling-edge interrupt to happen...
	}
/*
A(g)=(T1/T2 - 0.5)/0.0125
T2 is set by resistor (1.2 M Ohm resistor yields 9.6 ms T2)
at rest 0g=50% Duty cycle

(Int_3_Period/65536)/26.21 ----> yields Int_3_Period in ms

{[(Int_3_Period in ms)/(9.6 ms T2)]-0.5}/0.0125 -------> yields acceleration in g's

but from what i understand this thing doesn't like floating point numbers
so, plug it into a TI-89 with Int_3 as x, go to approx mode and hit expand
you get this:

	(x/206124) - 40

so we will use this instead as its both simpler and only deals with integers
for x's smaller than 500,000 there is essentially no error in using this approx (0.0002 percent)

*/

//	xacceleration=(Int_3_Period/206124) - 40; THIS IS THE ONE WE WANT WHEN IT WORKS
//	xacceleration=(Int_3_Period); ---------> this doesn't even give me anything (seems that Int_3_Period always remains at 0)

	//xacceleration=Int_3_Down_Edge_Count_High; ------>never gets here or at least it says its always 0
	//xacceleration=Int_3_Up_Edge_Count_High;    ---------> never gets here either

}



//parts of this provided by K. Watson from JPL who helps out FIRST teams with code
//it appeared as help for pwm input for an infrared tracking device
void Int_4_Handler(unsigned char RB5_State)
{
	unsigned char tbuf; // temporary data buffer
	unsigned int Int_4_Period; // pulse-width period
	unsigned int Int_4_Up_Edge_Count_Low; // lower 16-bits of the rising-edge time snapshot
	unsigned int Int_4_Up_Edge_Count_High; // upper 16-bits of the rising-edge time snapshot
	static unsigned int Int_4_Down_Edge_Count_Low; // lower 16-bits of the falling-edge time snapshot
	static unsigned int Int_4_Down_Edge_Count_High; // upper 16-bits of the falling-edge time snapshot

	switch(RB5_State) // current state determines how the function behaves
	{
	case 0: // falling-edge detected (beginning of the pulse)
		Int_4_Down_Edge_Count_High = Clock; // get a snapshot of the time
		tbuf = TMR1L; // TMR1L must be read before TMR1H
		Int_4_Down_Edge_Count_Low = TMR1H;
		Int_4_Down_Edge_Count_Low <<= 8;
		Int_4_Down_Edge_Count_Low += tbuf;
		break; // now wait for the rising-edge interrupt to happen...

	case 1: // rising-edge detected (end of the pulse)
		Int_4_Up_Edge_Count_High = Clock; // get a snapshot of the time
		tbuf = TMR1L;
		Int_4_Up_Edge_Count_Low = TMR1H;
		Int_4_Up_Edge_Count_Low <<= 8;
		Int_4_Up_Edge_Count_Low += tbuf;
		
		// determine the pulse-width period by determining the time 
		// difference between the falling-edge and rising-edge interrupts
		if (Int_4_Up_Edge_Count_High == Int_4_Down_Edge_Count_High)
		{
			// this is quicker because the 16-bit system clock hasn't changed and therefore has no effect on the outcome
			Int_4_Period = Int_4_Up_Edge_Count_Low - Int_4_Down_Edge_Count_Low;
		}	
		else
		{
		//this works because the pulse-width will always be less than one clock tick(= 65536 timer ticks)
		//(=0.0000001 seconds) 1 * 10^-7 sec (0.1 micro seconds)
			Int_4_Period = 65536 - Int_4_Down_Edge_Count_Low + Int_4_Up_Edge_Count_Low;
		}
		break; // now wait for another falling-edge interrupt to happen...
	}

/*
A(g)=(T1/T2 - 0.5)/0.0125
T2 is set by resistor (1.2 M Ohm resistor yields 9.6 ms T2)
at rest 0g=50% Duty cycle

(Int_4_Period/65536)*10000 ----> yields Int_4_Period in ms

{[(Int_4_Period in ms)/(9.6 ms T2)]-0.5}/0.0125 -------> yields acceleration in g's

but from what i understand this thing doesn't like floating point numbers
so, plug it into a TI-89 with Int_3 as x, go to approx mode and hit expand
you get this:

	(x/206124) - 40

so we will use this instead as its both simpler and only deals with integers
for x's smaller than 500,000 there is essentially no error in using this approx (0.0002 percent)

*/

	yacceleration=(Int_4_Period/206124) - 40;
}
Code:
/*
*Alpha 1 for accelerometer
*goal: get any sort of reading off the signal pins 
*and print it to the screen so we can see what we are dealing with
*
*/


#ifndef _accelerometer_h
#define _accelerometer_h



void Initialize_Accelerometer(void);	// initializes and starts the accelerometer code
int Get_xAcceleration(void);				// returns the current measured x acceleration
int Get_yAcceleration(void);				// returns the current measured y acceleration
void Initialize_Timer_1(void);			// initializes and starts timer 1
void Int_3_Handler(unsigned char);			// interrupt 3 routine (x axis) power yellow
void Int_4_Handler(unsigned char);			// interrupt 4 routine (y axis) red white
void Timer_1_Int_Handler(void);	//timer routine


// some handy macros
#define HIBYTE(value) ((unsigned char)(((unsigned int)(value)>>8)&0xFF))
#define LOBYTE(value) ((unsigned char)(value))
// state machine defines
#define WAITING_FOR_UP_EDGE 0
#define WAITING_FOR_DOWN_EDGE 1


extern unsigned int Clock;		//in myaccel.c

#endif
Code:
/*******************************************************************************
* FILE NAME: user_routines.c <FRC VERSION>
*
* DESCRIPTION:
*  This file contains the default mappings of inputs  
*  (like switches, joysticks, and buttons) to outputs on the RC.  
*
* USAGE:
*  You can either modify this file to fit your needs, or remove it from your 
*  project and replace it with a modified copy. 
*
*******************************************************************************/
#include <stdio.h>
#include "ifi_aliases.h"
#include "ifi_default.h"
#include "ifi_utilities.h"
#include "user_routines.h"
#include "user_Serialdrv.h"
#include "myaccelerometer.h"



/*** DEFINE USER VARIABLES AND INITIALIZE THEM HERE ***/

extern unsigned char aBreakerWasTripped;


/*******************************************************************************
* FUNCTION NAME: Limit_Switch_Max
* PURPOSE:       Sets a PWM value to neutral (127) if it exceeds 127 and the
*                limit switch is on.
* CALLED FROM:   this file
* ARGUMENTS:     
*     Argument       Type             IO   Description
*     --------       -------------    --   -----------
*     switch_state   unsigned char    I    limit switch state
*     *input_value   pointer           O   points to PWM byte value to be limited
* RETURNS:       void
*******************************************************************************/
void Limit_Switch_Max(unsigned char switch_state, unsigned char *input_value)
{
  if (switch_state == CLOSED)
  { 
    if(*input_value > 127)
      *input_value = 127;
  }
}


/*******************************************************************************
* FUNCTION NAME: Limit_Switch_Min
* PURPOSE:       Sets a PWM value to neutral (127) if it's less than 127 and the
*                limit switch is on.
* CALLED FROM:   this file
* ARGUMENTS:     
*     Argument       Type             IO   Description
*     --------       -------------    --   -----------
*     switch_state   unsigned char    I    limit switch state
*     *input_value   pointer           O   points to PWM byte value to be limited
* RETURNS:       void
*******************************************************************************/
void Limit_Switch_Min(unsigned char switch_state, unsigned char *input_value)
{
  if (switch_state == CLOSED)
  { 
    if(*input_value < 127)
      *input_value = 127;
  }
}


/*******************************************************************************
* FUNCTION NAME: Limit_Mix
* PURPOSE:       Limits the mixed value for one joystick drive.
* CALLED FROM:   Default_Routine, this file
* ARGUMENTS:     
*     Argument             Type    IO   Description
*     --------             ----    --   -----------
*     intermediate_value    int    I    
* RETURNS:       unsigned char
*******************************************************************************/
unsigned char Limit_Mix (int intermediate_value)
{
  static int limited_value;
  
  if (intermediate_value < 2000)
  {
    limited_value = 2000;
  }
  else if (intermediate_value > 2254)
  {
    limited_value = 2254;
  }
  else
  {
    limited_value = intermediate_value;
  }
  return (unsigned char) (limited_value - 2000);
}


/*******************************************************************************
* FUNCTION NAME: User_Initialization
* PURPOSE:       This routine is called first (and only once) in the Main function.  
*                You may modify and add to this function.
* CALLED FROM:   main.c
* ARGUMENTS:     none
* RETURNS:       void
*******************************************************************************/
void User_Initialization (void)
{
  Set_Number_of_Analog_Channels(SIXTEEN_ANALOG);    /* DO NOT CHANGE! */

/* FIRST: Set up the I/O pins you want to use as digital INPUTS. */
  digital_io_01 = digital_io_02 = digital_io_03 = digital_io_04 = INPUT;
  digital_io_05 = digital_io_06 = digital_io_07 = digital_io_08 = INPUT;
  digital_io_09 = digital_io_10 = digital_io_11 = digital_io_12 = INPUT;
  digital_io_13 = digital_io_14 = digital_io_15 = digital_io_16 = INPUT;
  digital_io_18 = INPUT;  /* Used for pneumatic pressure switch. */
    /* 
     Note: digital_io_01 = digital_io_02 = ... digital_io_04 = INPUT; 
           is the same as the following:

           digital_io_01 = INPUT;
           digital_io_02 = INPUT;
           ...
           digital_io_04 = INPUT;
    */

/* SECOND: Set up the I/O pins you want to use as digital OUTPUTS. */
  digital_io_17 = OUTPUT;    /* Example - Not used in Default Code. */

/* THIRD: Initialize the values on the digital outputs. */
  rc_dig_out17 = 0;

/* FOURTH: Set your initial PWM values.  Neutral is 127. */
  pwm01 = pwm02 = pwm03 = pwm04 = pwm05 = pwm06 = pwm07 = pwm08 = 127;
  pwm09 = pwm10 = pwm11 = pwm12 = pwm13 = pwm14 = pwm15 = pwm16 = 127;

/* FIFTH: Set your PWM output types for PWM OUTPUTS 13-16.
  /*   Choose from these parameters for PWM 13-16 respectively:               */
  /*     IFI_PWM  - Standard IFI PWM output generated with Generate_Pwms(...) */
  /*     USER_CCP - User can use PWM pin as digital I/O or CCP pin.           */
  Setup_PWM_Output_Type(IFI_PWM,IFI_PWM,IFI_PWM,IFI_PWM);

  /* 
     Example: The following would generate a 40KHz PWM with a 50% duty cycle on the CCP2 pin:

         CCP2CON = 0x3C;
         PR2 = 0xF9;
         CCPR2L = 0x7F;
         T2CON = 0;
         T2CONbits.TMR2ON = 1;

         Setup_PWM_Output_Type(USER_CCP,IFI_PWM,IFI_PWM,IFI_PWM);
  */

  /* Add any other initialization code here. */

  Putdata(&txdata);             /* DO NOT CHANGE! */

  Serial_Driver_Initialize();
  Initialize_Serial_Comms();

  //printf("IFI 2005 User Processor Initialized ...\r");  /* Optional - Print initialization message. */
  /* Note:  use a '\r' rather than a '\n' with the new compiler (v2.4) */


  User_Proc_Is_Ready();         /* DO NOT CHANGE! - last line of User_Initialization */
}

/*******************************************************************************
* FUNCTION NAME: Process_Data_From_Master_uP
* PURPOSE:       Executes every 26.2ms when it gets new data from the master 
*                microprocessor.
* CALLED FROM:   main.c
* ARGUMENTS:     none
* RETURNS:       void
*******************************************************************************/
void Process_Data_From_Master_uP(void)
{
  static unsigned char i;
  static unsigned char delay;
	int xaccel;
	int yaccel;

  Getdata(&rxdata);   /* Get fresh data from the master microprocessor. */


  Default_Routine();  /* Optional.  See below. */

  Generate_Pwms(pwm13,pwm14,pwm15,pwm16);

  /* Eample code to check if a breaker was ever tripped. */

  if (aBreakerWasTripped)
  {
    for (i=1;i<29;i++)
    {
      if (Breaker_Tripped(i))
        User_Byte1 = i;  /* Update the last breaker tripped on User_Byte1 (to demonstrate the use of a user byte) 
                           // Normally, you do something else if a breaker got tripped (ex: limit a PWM output)     */
    }
  }
///////////////////////////////////////////////////////////////////
	//get x and y accel and print them to the serial port
	xaccel=Get_xAcceleration();
	printf("The x accel: %d", xaccel);
//////////////////////////////////////////////////////////////
	yaccel=Get_yAcceleration();
	printf("The y accel: %d", yaccel);
//////////////////////////////////////////////////////////////////

  Putdata(&txdata);             /* DO NOT CHANGE! */
}

/*******************************************************************************
* FUNCTION NAME: Default_Routine
* PURPOSE:       Performs the default mappings of inputs to outputs for the
*                Robot Controller.
* CALLED FROM:   this file, Process_Data_From_Master_uP routine
* ARGUMENTS:     none
* RETURNS:       void
*******************************************************************************/
void Default_Routine(void)
{
  
 /*---------- Analog Inputs (Joysticks) to PWM Outputs-----------------------
  *--------------------------------------------------------------------------
  *   This maps the joystick axes to specific PWM outputs.
  */
  pwm01 = p1_y;   
  pwm02 = p2_y;   
  pwm03 = p3_y;   
  pwm04 = p4_y;   
  pwm05 = p1_x;   
  pwm06 = p2_x;   
  pwm07 = p3_x;   
  pwm08 = p4_x;   
  pwm09 = p1_wheel;
  pwm10 = p2_wheel;   
  pwm11 = p3_wheel;   
  pwm12 = p4_wheel;   
  
 /*---------- 1 Joystick Drive ----------------------------------------------
  *--------------------------------------------------------------------------
  *  This code mixes the Y and X axis on Port 1 to allow one joystick drive. 
  *  Joystick forward  = Robot forward
  *  Joystick backward = Robot backward
  *  Joystick right    = Robot rotates right
  *  Joystick left     = Robot rotates left
  *  Connect the right drive motors to PWM13 and/or PWM14 on the RC.
  *  Connect the left  drive motors to PWM15 and/or PWM16 on the RC.
  */  

  
 /*---------- Buttons to Relays----------------------------------------------
  *--------------------------------------------------------------------------
  *  This default code maps the joystick buttons to specific relay outputs.  
  *  Relays 1 and 2 use limit switches to stop the movement in one direction.
  *  The & used below is the C symbol for AND                                
  */
  relay1_fwd = p1_sw_trig & rc_dig_in01;  /* FWD only if switch1 is not closed. */
  relay1_rev = p1_sw_top  & rc_dig_in02;  /* REV only if switch2 is not closed. */
  relay2_fwd = p2_sw_trig & rc_dig_in03;  /* FWD only if switch3 is not closed. */
  relay2_rev = p2_sw_top  & rc_dig_in04;  /* REV only if switch4 is not closed. */
  relay3_fwd = p3_sw_trig;
  relay3_rev = p3_sw_top;
  relay4_fwd = p4_sw_trig;
  relay4_rev = p4_sw_top;
  relay5_fwd = p1_sw_aux1;
  relay5_rev = p1_sw_aux2;
  relay6_fwd = p3_sw_aux1;
  relay6_rev = p3_sw_aux2;
  relay7_fwd = p4_sw_aux1;
  relay7_rev = p4_sw_aux2;
  relay8_fwd = !rc_dig_in18;  /* Power pump only if pressure switch is off. */
  relay8_rev = 0;
  
  /*---------- PWM outputs Limited by Limit Switches  ------------------------*/
  
  Limit_Switch_Max(rc_dig_in05, &pwm03);
  Limit_Switch_Min(rc_dig_in06, &pwm03);
  Limit_Switch_Max(rc_dig_in07, &pwm04);
  Limit_Switch_Min(rc_dig_in08, &pwm04);
  Limit_Switch_Max(rc_dig_in09, &pwm09);
  Limit_Switch_Min(rc_dig_in10, &pwm09);
  Limit_Switch_Max(rc_dig_in11, &pwm10);
  Limit_Switch_Min(rc_dig_in12, &pwm10);
  Limit_Switch_Max(rc_dig_in13, &pwm11);
  Limit_Switch_Min(rc_dig_in14, &pwm11);
  Limit_Switch_Max(rc_dig_in15, &pwm12);
  Limit_Switch_Min(rc_dig_in16, &pwm12);
  

 /*---------- ROBOT FEEDBACK LEDs------------------------------------------------
  *------------------------------------------------------------------------------
  *   This section drives the "ROBOT FEEDBACK" lights on the Operator Interface.
  *   The lights are green for joystick forward and red for joystick reverse.
  *   Both red and green are on when the joystick is centered.  Use the
  *   trim tabs on the joystick to adjust the center.     
  *   These may be changed for any use that the user desires.                       
  */	
  
  if (user_display_mode == 0) /* User Mode is Off */
    
  { /* Check position of Port 1 Joystick */
    if (p1_y >= 0 && p1_y <= 56)
    {                     /* Joystick is in full reverse position */
      Pwm1_green  = 0;    /* Turn PWM1 green LED - OFF */
      Pwm1_red  = 1;      /* Turn PWM1 red LED   - ON  */
    }
    else if (p1_y >= 125 && p1_y <= 129)
    {                     /* Joystick is in neutral position */
      Pwm1_green  = 1;    /* Turn PWM1 green LED - ON */
      Pwm1_red  = 1;      /* Turn PWM1 red LED   - ON */
    }
    else if (p1_y >= 216 && p1_y <= 255)
    {                     /* Joystick is in full forward position*/
      Pwm1_green  = 1;    /* Turn PWM1 green LED - ON  */
      Pwm1_red  = 0;      /* Turn PWM1 red LED   - OFF */
    }
    else
    {                     /* In either forward or reverse position */
      Pwm1_green  = 0;    /* Turn PWM1 green LED - OFF */
      Pwm1_red  = 0;      /* Turn PWM1 red LED   - OFF */
    }  /*END Check position of Port 1 Joystick
    
    /* Check position of Port 2 Y Joystick 
           (or Port 1 X in Single Joystick Drive Mode) */
    if (p2_y >= 0 && p2_y <= 56)
    {                     /* Joystick is in full reverse position */
      Pwm2_green  = 0;    /* Turn pwm2 green LED - OFF */
      Pwm2_red  = 1;      /* Turn pwm2 red LED   - ON  */
    }
    else if (p2_y >= 125 && p2_y <= 129)
    {                     /* Joystick is in neutral position */
      Pwm2_green  = 1;    /* Turn PWM2 green LED - ON */
      Pwm2_red  = 1;      /* Turn PWM2 red LED   - ON */
    }
    else if (p2_y >= 216 && p2_y <= 255)
    {                     /* Joystick is in full forward position */
      Pwm2_green  = 1;    /* Turn PWM2 green LED - ON  */
      Pwm2_red  = 0;      /* Turn PWM2 red LED   - OFF */
    }
    else
    {                     /* In either forward or reverse position */
      Pwm2_green  = 0;    /* Turn PWM2 green LED - OFF */
      Pwm2_red  = 0;      /* Turn PWM2 red LED   - OFF */
    }  /* END Check position of Port 2 Joystick */
    
    /* This drives the Relay 1 and Relay 2 "Robot Feedback" lights on the OI. */
    Relay1_green = relay1_fwd;    /* LED is ON when Relay 1 is FWD */
    Relay1_red = relay1_rev;      /* LED is ON when Relay 1 is REV */
    Relay2_green = relay2_fwd;    /* LED is ON when Relay 2 is FWD */
    Relay2_red = relay2_rev;      /* LED is ON when Relay 2 is REV */

    Switch1_LED = !(int)rc_dig_in01;
    Switch2_LED = !(int)rc_dig_in02;
    Switch3_LED = !(int)rc_dig_in03;
    
  } /* (user_display_mode = 0) (User Mode is Off) */
  
  else  /* User Mode is On - displays data in OI 4-digit display*/
  {
    User_Mode_byte = backup_voltage*10; /* so that decimal doesn't get truncated. */
  }   
  
} /* END Default_Routine(); */

/******************************************************************************/
/******************************************************************************/
/******************************************************************************/
Attached Files
File Type: c myaccelerometer.c (8.6 KB, 43 views)
File Type: h myaccelerometer.h (1.0 KB, 44 views)
File Type: c user_routines.c (14.2 KB, 47 views)

Last edited by ImmortalAres : 02-06-2005 at 14:02.