View Single Post
  #3   Spotlight this post!  
Unread 09-01-2008, 16:08
Jared Russell's Avatar
Jared Russell Jared Russell is offline
Taking a year (mostly) off
FRC #0254 (The Cheesy Poofs), FRC #0341 (Miss Daisy)
Team Role: Engineer
 
Join Date: Nov 2002
Rookie Year: 2001
Location: San Francisco, CA
Posts: 3,077
Jared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond reputeJared Russell has a reputation beyond repute
Re: Springs?? (10 lbs. at 22 ft/s)

I'll do the calculations for you, but you should be VERY careful about launching a 10lb ball at such a speed. FIRST may deem it a safety hazard.

You want to accelerate 10lbs to 22 ft/s. The potential energy stored in a spring is .5*k*x^2, where k is the spring constant (basically, the stiffness of the spring) and x is the deformation or extension of the spring.

10lbs traveling at 22 ft/s means a kinetic energy of .5*m*v^2, or 102 Joules (after conversion to SI units). Thus, you need at least 102 Joules of potential energy from the spring.

There are two ways to do this - either get a higher spring constant, or compress the spring more. So for a given spring constant or compression, you can alter the other factor to yield the potential energy you need.

Now let's look at McMaster's website.
http://www.mcmaster.com/param/dsc/dsc.aspx?dsc=Springs

All you have to do is find a combination of spring constant (also called rate on some pages) and compression distance that work for you. There are plenty of options there.