View Single Post
  #12   Spotlight this post!  
Unread 18-05-2009, 21:00
vamfun vamfun is offline
Mentor :Contol System Engineer
AKA: Chris
FRC #0599 (Robodox)
Team Role: Engineer
 
Join Date: Jan 2009
Rookie Year: 2003
Location: Van Nuys, California
Posts: 182
vamfun is a glorious beacon of lightvamfun is a glorious beacon of lightvamfun is a glorious beacon of lightvamfun is a glorious beacon of lightvamfun is a glorious beacon of lightvamfun is a glorious beacon of light
Send a message via AIM to vamfun
Re: Failed attempt to explain JAG linearity

Quote:
the sum of the EMF and wiring voltage drop must exceed the battery voltage plus 2.5 volts for current to flow. Even if the lowside FET is still turned on, the junction will be shunted by the diode when it is forward biased.
For further discussions, I will always refer to Vemf as a battery or source and due only to the rotation of the motor. I refer to V_L as the inductor voltage that is caused only by the current rate in the wires.

I still don't agree with the quoted statement and its time we drew some pictures. I will post a few shortly...but I think its the current rate that you are neglecting. As soon as the 12v is switched off, the field created by the current collapses and creates a voltage drop across the inductor that tries to sustain that current. If the low side diode wasnt there it would indeed cause a spark and almost instanteous discharge of the coil. But, the low side diode is there to allow current to flow in the same direction but with a negative rate. So the inductor voltage jumps to the sum of :

V_L = -(i*R + Vemf + V_diode ) and the current now decays at a rate

di/dt = V_L / L until the current goes to zero.



The low side FET that is ON is still conducting current in the same direction as the charge period. (As far as I know, these MOSFETs can conduct current in both directions when turned ON but that is an unknown to me.)

Last edited by vamfun : 18-05-2009 at 21:02.