View Single Post
  #5   Spotlight this post!  
Unread 23-12-2010, 17:05
Tom Line's Avatar
Tom Line Tom Line is offline
Raptors can't turn doorknobs.
FRC #1718 (The Fighting Pi)
Team Role: Mentor
 
Join Date: Jan 2007
Rookie Year: 1999
Location: Armada, Michigan
Posts: 2,509
Tom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond repute
Re: paper: joystick sensitivity (gain) adjustment

We take a somewhat different approach.

We use four linear equations (y=mx+b). First, we test our robot. So far, every robot we have built has been skid-steer. This means that there is an appreciable amount of motor force that it takes to break the robot into a skid to turn. Utilizing a control on the dashboard, we watch the values required to break it free using only one side. This is the B-intercept of our equation, so that the instant you move the joysticks out of the controller's preprogrammed deadband, you have enough power to turn the robot at the slowest possible speed.

So we use one equation from 0 to about 80% power. This portion has a gentle slope. After that, the slope goes from that point up to 1 (maximum joystick), 1 (maximum motor output). The nice part is that we only need to enter two values into our custom VI. The "B" y-intercept value that the drivetrain manages to start turning the robot at, and the intersection point of the two slopes.

For instance, if you were to graph it, the positive domain of the joystick would have these x,y points:

(X,Y)
(0,0.2)
(0.7,0.7)
(1,1)

I'm trying to attach a picture, but it doesn't appear I can do so in this forum.

Last edited by Tom Line : 23-12-2010 at 17:09.
Reply With Quote