|
|
|
![]() |
|
|||||||
|
||||||||
|
|
Thread Tools | Rate Thread | Display Modes |
|
#17
|
||||
|
||||
|
Re: Curve Driving Generator
Quote:
a=-(-2*y2+2*y1+(m2+m1)*x2+(-m2-m1)*x1)/(-x2^3+3*x1*x2^2-3*x1^2*x2+x1^3); b=(-3*x2*y2+x1*((m2-m1)*x2-3*y2)+(3*x2+3*x1)*y1+(m2+2*m1)*x2^2+(-2*m2-m1)*x1^2)/(-x2^3+3*x1*x2^2-3*x1^2*x2+x1^3); c=-(x1*((2*m2+m1)*x2^2-6*x2*y2)+6*x1*x2*y1+m1*x2^3+(-m2-2*m1)*x1^2*x2-m2*x1^3)/(-x2^3+3*x1*x2^2-3*x1^2*x2+x1^3); d=(x1^2*((m2-m1)*x2^2-3*x2*y2)+x1^3*(y2-m2*x2)+(3*x1*x2^2-x2^3)*y1+m1*x1*x2^3)/(-x2^3+3*x1*x2^2-3*x1^2*x2+x1^3); ... then you get: a = (m2X2 - 2Y2)/X23 b = (3Y2 - m2X2)/X22 c = 0 d = 0 ... and since c=0 and d=0, the cubic Y = aX3 + bX2 + cX + d is reduced to: Y = aX3 + bX2 Quote:
Last edited by Ether : 31-03-2012 at 01:08. |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|