Go to Post A lack of knowledge is okay; a lack of initiative to learn more is not. - Madison [more]
Home
Go Back   Chief Delphi > Technical > Programming > Java
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
 
 
Thread Tools Rate Thread Display Modes
Prev Previous Post   Next Post Next
  #4   Spotlight this post!  
Unread 04-02-2013, 06:53 PM
4733 4733 is offline
Registered User
FRC #4733
 
Join Date: Feb 2013
Location: calgary
Posts: 4
4733 is an unknown quantity at this point
Re: activate second-function motor with joystick

PHP Code:
package edu.wpi.first.wpilibj.defaultCode;


import edu.wpi.first.wpilibj.IterativeRobot;
import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.Solenoid;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.Watchdog;

/**
 * This "BuiltinDefaultCode" provides the "default code" functionality as used in the "Benchtop Test."
 *
 * The BuiltinDefaultCode extends the IterativeRobot base class to provide the "default code"
 * functionality to confirm the operation and usage of the core control system components, as
 * used in the "Benchtop Test" described in Chapter 2 of the 2009 FRC Control System Manual.
 *
 * This program provides features in the Disabled, Autonomous, and Teleop modes as described
 * in the benchtop test directions, including "once-a-second" debugging printouts when disabled,
 * a "KITT light show" on the solenoid lights when in autonomous, and elementary driving
 * capabilities and "button mapping" of joysticks when teleoperated.  This demonstration
 * program also shows the use of the user watchdog timer.
 *
 * This demonstration is not intended to serve as a "starting template" for development of
 * robot code for a team, as there are better templates and examples created specifically
 * for that purpose.  However, teams may find the techniques used in this program to be
 * interesting possibilities for use in their own robot code.
 *
 * The details of the behavior provided by this demonstration are summarized below:
 *
 * Disabled Mode:
 * - Once per second, print (on the console) the number of seconds the robot has been disabled.
 *
 * Autonomous Mode:
 * - Flash the solenoid lights like KITT in Knight Rider
 * - Example code (commented out by default) to drive forward at half-speed for 2 seconds
 *
 * Teleop Mode:
 * - Select between two different drive options depending upon Z-location of Joystick1
 * - When "Z-Up" (on Joystick1) provide "arcade drive" on Joystick1
 * - When "Z-Down" (on Joystick1) provide "tank drive" on Joystick1 and Joystick2
 * - Use Joystick buttons (on Joystick1 or Joystick2) to display the button number in binary on
 *   the solenoid LEDs (Note that this feature can be used to easily "map out" the buttons on a
 *   Joystick.  Note also that if multiple buttons are pressed simultaneously, a "15" is displayed
 *   on the solenoid LEDs to indicate that multiple buttons are pressed.)
 *
 * This code assumes the following connections:
 * - Driver Station:
 *   - USB 1 - The "right" joystick.  Used for either "arcade drive" or "right" stick for tank drive
 *   - USB 2 - The "left" joystick.  Used as the "left" stick for tank drive
 *
 * - Robot:
 *   - Digital Sidecar 1:
 *     - PWM 1/3 - Connected to "left" drive motor(s)
 *     - PWM 2/4 - Connected to "right" drive motor(s)
 *
 * The VM is configured to automatically run this class, and to call the
 * functions corresponding to each mode, as described in the IterativeRobot
 * documentation. If you change the name of this class or the package after
 * creating this project, you must also update the manifest file in the resource
 * directory.
 */
public class DefaultRobot extends IterativeRobot {
    
// Declare variable for the robot drive system
    
RobotDrive m_robotDrive;        // robot will use PWM 1-4 for drive motors

    
int m_dsPacketsReceivedInCurrentSecond;    // keep track of the ds packets received in the current second

    // Declare variables for the two joysticks being used
    
Joystick m_rightStick;            // joystick 1 (arcade stick or right tank stick)
    
Joystick m_leftStick;            // joystick 2 (tank left stick)

    
static final int NUM_JOYSTICK_BUTTONS 16;
    
boolean[] m_rightStickButtonState = new boolean[(NUM_JOYSTICK_BUTTONS+1)];
    
boolean[] m_leftStickButtonState = new boolean[(NUM_JOYSTICK_BUTTONS+1)];

    
// Declare variables for each of the eight solenoid outputs
    
static final int NUM_SOLENOIDS 8;
    
Solenoid[] m_solenoids = new Solenoid[NUM_SOLENOIDS];

    
// drive mode selection
    
static final int UNINITIALIZED_DRIVE 0;
    static final 
int ARCADE_DRIVE 1;
    static final 
int TANK_DRIVE 2;
    
int m_driveMode;

    
// Local variables to count the number of periodic loops performed
    
int m_autoPeriodicLoops;
    
int m_disabledPeriodicLoops;
    
int m_telePeriodicLoops;

    
/**
     * Constructor for this "BuiltinDefaultCode" Class.
     *
     * The constructor creates all of the objects used for the different inputs and outputs of
     * the robot.  Essentially, the constructor defines the input/output mapping for the robot,
     * providing named objects for each of the robot interfaces.
     */
    
public DefaultRobot() {
        
System.out.println("BuiltinDefaultCode Constructor Started\n");

        
// Create a robot using standard right/left robot drive on PWMS 1, 2, 3, and #4
        
m_robotDrive = new RobotDrive(1324);

        
m_dsPacketsReceivedInCurrentSecond 0;

        
// Define joysticks being used at USB port #1 and USB port #2 on the Drivers Station
        
m_rightStick = new Joystick(1);
        
m_leftStick = new Joystick(2);

        
// Iterate over all the buttons on each joystick, setting state to false for each
        
int buttonNum 1;                        // start counting buttons at button 1
        
for (buttonNum 1buttonNum <= NUM_JOYSTICK_BUTTONSbuttonNum++) {
            
m_rightStickButtonState[buttonNum] = false;
            
m_leftStickButtonState[buttonNum] = false;
        }

        
// Iterate over all the solenoids on the robot, constructing each in turn
        
int solenoidNum 1;                        // start counting solenoids at solenoid 1
        
for (solenoidNum 0solenoidNum NUM_SOLENOIDSsolenoidNum++) {
            
m_solenoids[solenoidNum] = new Solenoid(solenoidNum 1);
        }

        
// Set drive mode to uninitialized
        
m_driveMode UNINITIALIZED_DRIVE;

        
// Initialize counters to record the number of loops completed in autonomous and teleop modes
        
m_autoPeriodicLoops 0;
        
m_disabledPeriodicLoops 0;
        
m_telePeriodicLoops 0;

        
System.out.println("BuiltinDefaultCode Constructor Completed\n");
    }


    
/********************************** Init Routines *************************************/

    
public void robotInit() {
        
// Actions which would be performed once (and only once) upon initialization of the
        // robot would be put here.

        
System.out.println("RobotInit() completed.\n");
    }

    public 
void disabledInit() {
        
m_disabledPeriodicLoops 0;            // Reset the loop counter for disabled mode
        
ClearSolenoidLEDsKITT();
        
startSec = (int)(Timer.getUsClock() / 1000000.0);
        
printSec startSec 1;
    }

    public 
void autonomousInit() {
        
m_autoPeriodicLoops 0;                // Reset the loop counter for autonomous mode
        
ClearSolenoidLEDsKITT();
    }

    public 
void teleopInit() {
        
m_telePeriodicLoops 0;                // Reset the loop counter for teleop mode
        
m_dsPacketsReceivedInCurrentSecond 0;    // Reset the number of dsPackets in current second
        
m_driveMode UNINITIALIZED_DRIVE;        // Set drive mode to uninitialized
        
ClearSolenoidLEDsKITT();
    }

    
/********************************** Periodic Routines *************************************/
    
static int printSec;
    static 
int startSec;

    public 
void disabledPeriodic()  {
        
// feed the user watchdog at every period when disabled
        
Watchdog.getInstance().feed();

        
// increment the number of disabled periodic loops completed
        
m_disabledPeriodicLoops++;

        
// while disabled, printout the duration of current disabled mode in seconds
        
if ((Timer.getUsClock() / 1000000.0) > printSec) {
            
System.out.println("Disabled seconds: " + (printSec startSec));
            
printSec++;
        }
    }

    public 
void autonomousPeriodic() {
        
// feed the user watchdog at every period when in autonomous
        
Watchdog.getInstance().feed();

        
m_autoPeriodicLoops++;

        
// generate KITT-style LED display on the solenoids
        
SolenoidLEDsKITTm_autoPeriodicLoops );

        
/* the below code (if uncommented) would drive the robot forward at half speed
         * for two seconds.  This code is provided as an example of how to drive the
         * robot in autonomous mode, but is not enabled in the default code in order
         * to prevent an unsuspecting team from having their robot drive autonomously!
         */
        /* below code commented out for safety
        if (m_autoPeriodicLoops == 1) {
            // When on the first periodic loop in autonomous mode, start driving forwards at half speed
            m_robotDrive->Drive(0.5, 0.0);            // drive forwards at half speed
        }
        if (m_autoPeriodicLoops == (2 * GetLoopsPerSec())) {
            // After 2 seconds, stop the robot
            m_robotDrive->Drive(0.0, 0.0);            // stop robot
        }
        */
    
}

       public 
void teleopPeriodic() {
        
// feed the user watchdog at every period when in autonomous
        
Watchdog.getInstance().feed();

        
// increment the number of teleop periodic loops completed
        
m_telePeriodicLoops++;

        
/*
         * Code placed in here will be called only when a new packet of information
         * has been received by the Driver Station.  Any code which needs new information
         * from the DS should go in here
         */

        
m_dsPacketsReceivedInCurrentSecond++;                    // increment DS packets received

        // put Driver Station-dependent code here

        // Demonstrate the use of the Joystick buttons

        
Solenoid[] firstGroup = new Solenoid[4];
        
Solenoid[] secondGroup = new Solenoid[4];
        for (
int i 04i++) {
            
firstGroup[i] = m_solenoids[i];
            
secondGroup[i] = m_solenoids[4];
        }

        
DemonstrateJoystickButtons(m_rightStickm_rightStickButtonState"Right Stick"firstGroup);
        
DemonstrateJoystickButtons(m_leftStickm_leftStickButtonState"Left Stick "secondGroup);

        
// determine if tank or arcade mode, based upon position of "Z" wheel on kit joystick
        
if (m_rightStick.getZ() <= 0) {    // Logitech Attack3 has z-polarity reversed; up is negative
            // use arcade drive
            
m_robotDrive.arcadeDrive(m_rightStickfalse);            // drive with arcade style (use right stick)
            
if (m_driveMode != ARCADE_DRIVE) {
                
// if newly entered arcade drive, print out a message
                
System.out.println("Arcade Drive\n");
                
m_driveMode ARCADE_DRIVE;
            }
        } else {
            
// use tank drive
            
m_robotDrive.tankDrive(m_leftStickm_rightStick);    // drive with tank style
            
if (m_driveMode != TANK_DRIVE) {
                
// if newly entered tank drive, print out a message
                
System.out.println("Tank Drive\n");
                
m_driveMode TANK_DRIVE;
            }
        }
    }

    
/**
     * Clear KITT-style LED display on the solenoids
     *
     * Clear the solenoid LEDs used for a KITT-style LED display.
     */
    
public void ClearSolenoidLEDsKITT() {
        
// Iterate over all the solenoids on the robot, clearing each in turn
        
int solenoidNum 1;                        // start counting solenoids at solenoid 1
        
for (solenoidNum 0solenoidNum NUM_SOLENOIDSsolenoidNum++) {
            
m_solenoids[solenoidNum].set(false);
        }
    }

    
/**
     * Generate KITT-style LED display on the solenoids
     *
     * This method expects to be called during each periodic loop, with the argument being the
     * loop number for the current loop.
     *
     * The goal here is to generate a KITT-style LED display.  (See http://en.wikipedia.org/wiki/KITT )
     * However, since the solenoid module has two scan bars, we can have ours go in opposite directions!
     * The scan bar is written to have a period of one second with six different positions.
     */
    
public void SolenoidLEDsKITT(int numloops) {
    
    }

    
int GetLoopsPerSec() {
        return 
20;
    }

    
/**
     * Demonstrate handling of joystick buttons
     *
     * This method expects to be called during each periodic loop, providing the following
     * capabilities:
     * - Print out a message when a button is initially pressed
     * - Solenoid LEDs light up according to joystick buttons:
     *   - When no buttons pressed, clear the solenoid LEDs
     *   - When only one button is pressed, show the button number (in binary) via the solenoid LEDs
     *   - When more than one button is pressed, show "15" (in binary) via the solenoid LEDs
     */
    
public void DemonstrateJoystickButtons(Joystick currStick,
                                    
boolean[] buttonPreviouslyPressed,
                                    
String stickString,
                                    
Solenoid solenoids[]) {

        
int buttonNum 1;                // start counting buttons at button 1
        
boolean outputGenerated false;        // flag for whether or not output is generated for a button
        
int numOfButtonPressed 0;        // 0 if no buttons pressed, -1 if multiple buttons pressed

        /* Iterate over all the buttons on the joystick, checking to see if each is pressed
         * If a button is pressed, check to see if it is newly pressed; if so, print out a
         * message on the console
         */
        
for (buttonNum 1buttonNum <= NUM_JOYSTICK_BUTTONSbuttonNum++) {
            if (
currStick.getRawButton(buttonNum)) {
                
// the current button is pressed, now act accordingly...
                
if (!buttonPreviouslyPressed[buttonNum]) {
                    
// button newly pressed; print out a message
                    
if (!outputGenerated) {
                        
// print out a heading if no other button pressed this cycle
                        
outputGenerated true;
                        
System.out.println("button pressed:" stickString);
                    }
                    
System.out.println(" " buttonNum);
                                        while(
buttonNum == 5)
                                        {
                                            
m_solenoids[5].set(true);
                                            
m_solenoids[1].set(false);
                                            
m_solenoids[2].set(false);
                                            
m_solenoids[3].set(false);
                                            
m_solenoids[4].set(false);
                                            
m_solenoids[6].set(false);
                                            
m_solenoids[7].set(false);
                                        }
                }
                
// remember that this button is pressed for the next iteration
                
buttonPreviouslyPressed[buttonNum] = true;

                
// set numOfButtonPressed appropriately
                
if (numOfButtonPressed == 0) {
                    
// no button pressed yet this time through, set the number correctly
                    
numOfButtonPressed buttonNum;
                } else {
                    
// another button (or buttons) must have already been pressed, set appropriately
                    
numOfButtonPressed = -1;
                }
            } else {
                
buttonPreviouslyPressed[buttonNum] = false;
            }
        }

        
// after iterating through all the buttons, add a newline to output if needed
        
if (outputGenerated) {
            
System.out.println("\n");
        }

        if (
numOfButtonPressed == -1) {
            
// multiple buttons were pressed, display as if button 15 was pressed
            
DisplayBinaryNumberOnSolenoidLEDs(15solenoids);
        } else {
            
// display the number of the button pressed on the solenoids;
            // note that if no button was pressed (0), the solenoid display will be cleared (set to 0)
            
DisplayBinaryNumberOnSolenoidLEDs(numOfButtonPressedsolenoids);
        }
    }


    
/**
     * Display a given four-bit value in binary on the given solenoid LEDs
     */
    
void DisplayBinaryNumberOnSolenoidLEDs(int displayNumberSolenoid[] solenoids) {

        if (
displayNumber 15) {
            
// if the number to display is larger than can be displayed in 4 LEDs, display 0 instead
            
displayNumber 0;
        }

        
solenoids[3].set( (displayNumber 1) != 0);
        
solenoids[2].set( (displayNumber 2) != 0);
        
solenoids[1].set( (displayNumber 4) != 0);
        
solenoids[0].set( (displayNumber 8) != 0);
    }




ok.....what would i put and where in order to activate a third motor while a certain button on the joystick is pressed.

our robot is in your hands as i am the only coder and at my witts end
Reply With Quote
 


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 08:13 AM.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi