|
|
|
![]() |
|
|||||||
|
||||||||
![]() |
| Thread Tools | Rate Thread | Display Modes |
|
#16
|
|||||
|
|||||
|
Re: Statistics Quiz#1
Quote:
Here's the code: Maple (with Digits set to 30): Code:
evalf(CDF(RandomVariable(Binomial(2000, 1/3)), 671)); Code:
N[CDF[BinomialDistribution[2000, 1/3], 671], 30] |
|
#17
|
||||
|
||||
|
Re: Statistics Quiz#1
Quote:
That confirms the 80-digit arbitrary-precision calc I did with Maxima. The "very large fraction" has 953 digits in the numerator (and denominator). The first 80 digits of the decimal representation of that fraction are: Code:
load(distrib)$ fpprec:80$ bfloat(cdf_binomial(671,2000,1/3)); 0.59163471565316814711825684827930003268147312930167045093849129098685265637080124 0.591634715653168.....(Scilab) 0.59163471565317......(Maxima) 0.591634715653171.....(Matlab) 0.591634715653066.....(Octave) 0.59163471565245895...(Python) ... Scilab is the most accurate, Python the least, and Matlab is in the middle of the pack. If you do the calcs using double-precision in Maple and Mathematica, what result do you get? |
![]() |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|