|
|
|
![]() |
|
|||||||
|
||||||||
![]() |
|
|
Thread Tools | Rate Thread | Display Modes |
|
|
|
#1
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Graph of upper and lower boundary curves
|
|
#2
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Can I give the answers in parametric form?
Spoiler for parametric plot equations:
|
|
#3
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
You got it
![]() Reps to you ! |
|
#4
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Is it possible to represent Ryan's parametric equations in explicit form y=f(x) ? Or even implicit f(x,y)=0 ? |
|
#5
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Quote:
|
|
#6
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
|
|
#7
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Quote:
Are there any Mathematica gurus out there in CD land? |
|
#8
|
|||
|
|||
|
Re: Math Quiz: Parabola Path
As a function of x, it will describe the upper boundary on one side and the lower on the other. It does exist, but it is very ugly. I will try to remember to post it later.
|
|
#9
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Quote:
Quote:
Thank you. |
|
#10
|
|||
|
|||
|
Re: Math Quiz: Parabola Path
The display ones will come later.
Eq 1: Code:
−11.547344110855*sqrt(((x^(2)+133.34115601449)/(2.*x*sqrt(x^(2)+133.34115601449)*abs(x)+x^(4)+267.68231202898*x^(2)+17779.86388728)))*sign(abs(x)+x*sqrt(x^(2)+133.34115601449))-((0.0433*(abs(x)+x*sqrt(x^(2)+133.34115601449))^(2))/(x^(2)+133.34115601449)) Code:
(((11.547344110855*x*(x^(2)+133.34115601449)-11.547344110855*sqrt(x^(2)+133.34115601449)*abs(x))*sqrt(((1)/(−2.*x*sqrt(x^(2)+133.34115601449)*abs(x)+x^(4)+267.68231202898*x^(2)+17779.86388728))))/(abs(abs(x)-x*sqrt(x^(2)+133.34115601449))))-((0.0433*(abs(x)-x*sqrt(x^(2)+133.34115601449))^(2))/(x^(2)+133.34115601449)) ![]() |
|
#11
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Quote:
Your equations differ from Ryan's by about 0.01 near x=5 Also, the x-intercept of your upper-boundary equation differs from Ryan's by about 0.03 Given the number of decimal places in your equations, I would have expected them to be closer. Last edited by Ether : 12-03-2014 at 13:49. |
|
#12
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Jacob, Can you re-run Mathematica using the following parametric equations instead? Code:
x_lower = t + 2*a*t / sqrt(1 + (2*a*t)^2); y_lower = a*t^2 - 1 / sqrt(1 + (2*a*t)^2); x_upper = t - 2*a*t / sqrt(1 + (2*a*t)^2); y_upper = a*t^2 + 1 / sqrt(1 + (2*a*t)^2); |
|
#13
|
|||
|
|||
|
Re: Math Quiz: Parabola Path
I used a TI-Nspire and logic to arrive at my equations, so they are probably wrong. I will take a look at them this weekend.
|
|
#14
|
||||
|
||||
|
Re: Math Quiz: Parabola Path
Are there any Mathematica gurus out there? Wondering if there is a solution for the following problem: Find explicit functions y=y_lower(x) and y=y_upper(x) for the following parametric equations: Code:
x_lower = t + 2*a*t / sqrt(1 + (2*a*t)^2); y_lower = a*t^2 - 1 / sqrt(1 + (2*a*t)^2); x_upper = t - 2*a*t / sqrt(1 + (2*a*t)^2); y_upper = a*t^2 + 1 / sqrt(1 + (2*a*t)^2); |
![]() |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|