Go to Post Nuts for breakfast!!! Thats just screwy!!! I guess you could just bolt it down..... - Wayne C. [more]
Home
Go Back   Chief Delphi > Technical > Technical Discussion
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Closed Thread
Thread Tools Rating: Thread Rating: 5 votes, 5.00 average. Display Modes
  #1   Spotlight this post!  
Unread 25-05-2014, 22:06
brennonbrimhall brennonbrimhall is offline
Free Agent
AKA: Brennon Brimhall
no team
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2012
Location: Clifton Park, NY
Posts: 222
brennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to all
Physics of T-boning

I've been curious to know what T-boning is, precisely, from a physics standpoint, and what factors are involved.

In a situation where Robot A (with, say, a standard four rubber wheel drivetrain) is getting T-boned by Robot B (but not pinned), is it appropriate to define the T-bone as a situation where Robot B's drivetrain is applying a force that causes Robot A to lose traction with the floor (therefore only having the benefits of the coefficient of kinetc friction) and therefore not being able to generate enough force to escape laterally?

Does this imply that Robot A's drivetrain would be more resistant to T-boning if it had a higher coefficient of static friction?
__________________
Team 20, 2012-2014: 4 blue banners, 5 medals, and 9 team awards.
Church of Jesus Christ of Latter-day Saints, 2014-2016: Missionary, Colorado Denver South Mission.
  #2   Spotlight this post!  
Unread 25-05-2014, 22:27
DampRobot's Avatar
DampRobot DampRobot is offline
Physics Major
AKA: Roger Romani
FRC #0100 (The Wildhats) and FRC#971 (Spartan Robotics)
Team Role: College Student
 
Join Date: Jan 2012
Rookie Year: 2010
Location: Stanford University
Posts: 1,277
DampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond repute
Re: Physics of T-boning

T bones occur when the usual dynamic of friction in FRC is switched. Usually, friction between the ground and the wheels is static, or rolling, and the friction between bumpers is dynamic (as robots slide off each other, etc). When the bumper-bumper friction becomes static, and the wheel friction of the robot being defended becomes dynamic, then theres a T bone pin going on.

The pinned robot can't escape because they can't move sideways relative to the defending robot (because the bumper friction outweighs the sliding friction on the tires) and it can't move forwards of backwards relative to the pinning robot because it's wheels don't move that way. Its wheels are in constant dynamic friction because it is being pushed from the side, so it's always sliding (whether or not it's wheels are rotating). As soon as the pinned robot stops getting pushed sideways, it can usually get out of the pin.

Interestingly, one of the things we look for in tread (low sideways COF) which makes it easy to turn makes it particularly difficult to get out of T bone pins. We found VersaWheels were just terrible in this regard this year.
__________________
The mind is not a vessel to be filled, but a fire to be lighted.

-Plutarch
  #3   Spotlight this post!  
Unread 25-05-2014, 22:45
Bryce Paputa's Avatar
Bryce Paputa Bryce Paputa is offline
FF TSL: Frog Farce
FRC #0503 (Frog Force)
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2008
Location: Novi Michigan
Posts: 454
Bryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond repute
Re: Physics of T-boning

Now, omni wheels do not slip when pushed from the side, so they would be good for these situations, right?
  #4   Spotlight this post!  
Unread 25-05-2014, 22:55
Andrew Lawrence
 
Posts: n/a
Re: Physics of T-boning

Quote:
Originally Posted by Bryce Paputa View Post
Now, omni wheels do not slip when pushed from the side, so they would be good for these situations, right?
That is correct, but in most cases* an all-omni drive would just render you powerless against your opponents since you have almost no traction. A traction + omni mix, a butterfly drive, or drop down casters fixes this by adding an area of high friction to rotate around while the low friction spins out of the pin.

*Ellen Green and 33 are exempt from this
  #5   Spotlight this post!  
Unread 25-05-2014, 23:03
DampRobot's Avatar
DampRobot DampRobot is offline
Physics Major
AKA: Roger Romani
FRC #0100 (The Wildhats) and FRC#971 (Spartan Robotics)
Team Role: College Student
 
Join Date: Jan 2012
Rookie Year: 2010
Location: Stanford University
Posts: 1,277
DampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond reputeDampRobot has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by Andrew Lawrence View Post
That is correct, but in most cases* an all-omni drive would just render you powerless against your opponents since you have almost no traction. A traction + omni mix, a butterfly drive, or drop down casters fixes this by adding an area of high friction to rotate around while the low friction spins out of the pin.

*Ellen Green and 33 are exempt from this
I've seen other robots "roll" around defenders with all omni drives. See 9973 in the 2013 offseason, for example.

If it's a head to head pushing match, you're right, a omni drive would get creamed, because the rubber on omnis is no match for roughtop. On the other hand, if you're a robot getting defended, you shouldn't really be getting into many head on pushing matches, especially if you're an all omni drive (or butterfly drive). I'd argue that all omni drives are better for anti-T bone pinning purposes than half omni half traction (or drop down casters, etc.) as they're even less sideways friction, and give the defended robot more degrees of freedom to roll off in.
__________________
The mind is not a vessel to be filled, but a fire to be lighted.

-Plutarch
  #6   Spotlight this post!  
Unread 25-05-2014, 23:03
Bryce Paputa's Avatar
Bryce Paputa Bryce Paputa is offline
FF TSL: Frog Farce
FRC #0503 (Frog Force)
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2008
Location: Novi Michigan
Posts: 454
Bryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by Andrew Lawrence View Post
you have almost no traction.
Vex gives these values for CoF:
Omni: 1.1
Traction: 1.1
Versa: 1.2
Versa DT: 1.0

There isn't that much more traction with any of them. I don't know what roughtop would get using the vex method, but seeing as when you push sideways on a robot with omnis you don't get much normal force or friction (unless you are pinning, which is different), I would think they would work pretty well.
  #7   Spotlight this post!  
Unread 25-05-2014, 23:03
brennonbrimhall brennonbrimhall is offline
Free Agent
AKA: Brennon Brimhall
no team
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2012
Location: Clifton Park, NY
Posts: 222
brennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to allbrennonbrimhall is a name known to all
Re: Physics of T-boning

Quote:
Originally Posted by DampRobot View Post
T bones occur when the usual dynamic of friction in FRC is switched. Usually, friction between the ground and the wheels is static, or rolling, and the friction between bumpers is dynamic (as robots slide off each other, etc). When the bumper-bumper friction becomes static, and the wheel friction of the robot being defended becomes dynamic, then theres a T bone pin going on.

The pinned robot can't escape because they can't move sideways relative to the defending robot (because the bumper friction outweighs the sliding friction on the tires) and it can't move forwards of backwards relative to the pinning robot because it's wheels don't move that way. Its wheels are in constant dynamic friction because it is being pushed from the side, so it's always sliding (whether or not it's wheels are rotating). As soon as the pinned robot stops getting pushed sideways, it can usually get out of the pin.
That implies that bumper construction and design would be critical in a T-bone situation.

How would
  • Relative Bumper Height
  • Bumper Material
  • Robot Center of Gravity
theoretically play into a T-bone situation?
__________________
Team 20, 2012-2014: 4 blue banners, 5 medals, and 9 team awards.
Church of Jesus Christ of Latter-day Saints, 2014-2016: Missionary, Colorado Denver South Mission.

Last edited by brennonbrimhall : 25-05-2014 at 23:05.
  #8   Spotlight this post!  
Unread 25-05-2014, 23:06
Andrew Lawrence
 
Posts: n/a
Re: Physics of T-boning

Quote:
Originally Posted by Bryce Paputa View Post
Vex gives these values for CoF:
Omni: 1.1
Traction: 1.1
Versa: 1.2
Versa DT: 1.0

There isn't that much more traction with any of them. I don't know what roughtop would get using the vex method, but seeing as when you push sideways on a robot with omnis you don't get much normal force or friction (unless you are pinning, which is different), I would think they would work pretty well.
That is only in the direction of rotation, assuming movement is all in a straight line. Problem is because omnis have rollers on the wheels which makes them slip and slide and rotate, which makes it extremely easy to move an omni bot sideways, or rotate it from head-on.
  #9   Spotlight this post!  
Unread 25-05-2014, 23:10
Bryce Paputa's Avatar
Bryce Paputa Bryce Paputa is offline
FF TSL: Frog Farce
FRC #0503 (Frog Force)
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2008
Location: Novi Michigan
Posts: 454
Bryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by Andrew Lawrence View Post
That is only in the direction of rotation, assuming movement is all in a straight line. Problem is because omnis have rollers on the wheels which makes them slip and slide and rotate, which makes it extremely easy to move an omni bot sideways, or rotate it from head-on.
When you are trying to get out of a t-bone, you are trying to move forwards. With omni wheels, you should be able to do this pretty easily, with some extraneous sideways movement. Unless you're trying to do something like hang on a 2007 goal, I think this is better than being pushed halfway across the field.
  #10   Spotlight this post!  
Unread 25-05-2014, 23:16
Andrew Lawrence
 
Posts: n/a
Re: Physics of T-boning

Quote:
Originally Posted by brennonbrimhall View Post
That implies that bumper construction and design would be critical in a T-bone situation.

How would
  • Relative Bumper Height
  • Bumper Material
  • Robot Center of Gravity
theoretically play into a T-bone situation?
As you may have already seen, many teams are starting to shape their robots so that their bumpers assist with getting out of pins. 971 is a notable example with their octagonal frame this year, where the majority of their robot frame is angled so that they are more likely to be pinned from one of the angled parts where they can get out of instead of from the side or front where it's harder to get out of the pin.

The height of the bumper itself doesn't matter - it's the point of contact. Bumpers that contact each other more have more friction between each other. If both teams have their bumpers at the lowest possible point, then there is more friction between the bumpers. If one has their bumpers at the highest point, and another at the lowest point, there is less bumper friction and is therefore more difficult to pin solely due to bumper friction. What this also does is makes it easier for the robot with the lower bumpers to get under the bumpers of the robot with the higher bumpers, thereby lifting the pinned robot off the ground lessening their normal force (and their friction), and increasing their own normal force and friction, making their pinning strength a lot more powerful (and it's completely legal since it's not within the frame perimeter).

Bumper material definitely does play into the pin, since the coefficient of friction between two bumpers is dependent on the two materials. Teams have recently started making smooth leather bumpers to decrease this coefficient of friction and make slipping out of pins a lot easier.

A robot's center of mass will change where a robot rotates around when getting pinned, or if it will fall over when hit too hard. It is an option to put your center of mass off to one side making rotating out of pins through rotating that side a very viable option.

Last edited by Andrew Lawrence : 25-05-2014 at 23:24.
  #11   Spotlight this post!  
Unread 25-05-2014, 23:19
Andrew Lawrence
 
Posts: n/a
Re: Physics of T-boning

Quote:
Originally Posted by Bryce Paputa View Post
When you are trying to get out of a t-bone, you are trying to move forwards. With omni wheels, you should be able to do this pretty easily, with some extraneous sideways movement. Unless you're trying to do something like hang on a 2007 goal, I think this is better than being pushed halfway across the field.
You are correct that the lack of horizontal traction allows you to keep moving forward, but you don't just slip by because of the friction between the bumpers. What ends up happening is the pin starts moving in a circle due to the bumper friction pushing perpendicular to where the robot is driving away.
  #12   Spotlight this post!  
Unread 25-05-2014, 23:23
ttldomination's Avatar
ttldomination ttldomination is offline
Sunny
no team
Team Role: Mentor
 
Join Date: Mar 2007
Rookie Year: 2007
Location: Roanoke, TX
Posts: 2,066
ttldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by brennonbrimhall View Post
That implies that bumper construction and design would be critical in a T-bone situation.

How would
  • Relative Bumper Height
  • Bumper Material
  • Robot Center of Gravity
theoretically play into a T-bone situation?
There's a famous quote out there that goes something like, "Now you're thinking with portals." Along those same lines, think in terms what each of those variables would do to the friction between the two bumpers. In other words, start thinking in terms of vectors.

Relatively Bumper Height won't play too big of a role in prevent t-bones. Friction is a function of the surface material and the force involves. Limiting the surface area wouldn't do anything. However, mounting your bumpers too high could let a particularly low defender get under your bumpers, which isn't good either.

Bumper Material is definitely an interesting idea, and something that immediately came to mind when this thread popped up. The going theory is that if your bumper cover reduces friction, then you're on the right track. However, in my opinion, you'd need to not only show that your material is (a) low-friction on most other bumper material used in FRC and (b) makes a significant enough difference to actually matter.

COG is another interesting point. If you look on the three axis, "up and down" positioning should not matter in a pin situation (aside from the obvious instability issues). When considering where on the base your COG lies, this could be a difference. You'd have to consider the moments involved, which include the moments caused by your pinner, your wheels, etc. Ultimately, there's two things to note about this; you have to balance your free performance with anti-pinning performance and if a defender pins you head on your COG, you're both gonna get to know each other well for a few seconds.

- Sunny G.
__________________
1261: 2007-2012
1648: 2013-2014
5283: 2015
  #13   Spotlight this post!  
Unread 25-05-2014, 23:31
Bryce Paputa's Avatar
Bryce Paputa Bryce Paputa is offline
FF TSL: Frog Farce
FRC #0503 (Frog Force)
Team Role: Alumni
 
Join Date: Jan 2012
Rookie Year: 2008
Location: Novi Michigan
Posts: 454
Bryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond reputeBryce Paputa has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by Andrew Lawrence View Post
You are correct that the lack of horizontal traction allows you to keep moving forward, but you don't just slip by because of the friction between the bumpers. What ends up happening is the pin starts moving in a circle due to the bumper friction pushing perpendicular to where the robot is driving away.
Watch 33 in MSC Finals (https://www.youtube.com/watch?v=iTV77XLXB0Q). both 67 and 74 attempt to get them stuck in a t-bone multiple times, and the most successful attempts, 67 at 2:14 and 74 at 2:25, result in them getting turned a bit, but not dragged into a circular pin. Maybe it's just amazing driving, but I think their omni wheels play a pretty big role in it.
  #14   Spotlight this post!  
Unread 25-05-2014, 23:32
ttldomination's Avatar
ttldomination ttldomination is offline
Sunny
no team
Team Role: Mentor
 
Join Date: Mar 2007
Rookie Year: 2007
Location: Roanoke, TX
Posts: 2,066
ttldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond reputettldomination has a reputation beyond repute
Re: Physics of T-boning

Quote:
Originally Posted by Andrew Lawrence View Post
You are correct that the lack of horizontal traction allows you to keep moving forward, but you don't just slip by because of the friction between the bumpers. What ends up happening is the pin starts moving in a circle due to the bumper friction pushing perpendicular to where the robot is driving away.
I've actually seen this happen a lot on robots with good, traction setups. However, an all-omni setup goes to the other extremely and lets the robot slide out easier.

It is my understanding, that's why team 33 was successful with their DT this past year (along with some fancy software).

- Sunny G.
__________________
1261: 2007-2012
1648: 2013-2014
5283: 2015
  #15   Spotlight this post!  
Unread 25-05-2014, 23:51
Andrew Lawrence
 
Posts: n/a
Re: Physics of T-boning

Quote:
Originally Posted by Bryce Paputa View Post
Watch 33 in MSC Finals (https://www.youtube.com/watch?v=iTV77XLXB0Q). both 67 and 74 attempt to get them stuck in a t-bone multiple times, and the most successful attempts, 67 at 2:14 and 74 at 2:25, result in them getting turned a bit, but not dragged into a circular pin. Maybe it's just amazing driving, but I think their omni wheels play a pretty big role in it.
Remember my disclaimer - 33 is an outlier because of incredible driving. I'm talking in regards to the average team and average play. If someone is driving as well as the 33 drive team this year they understand all there is to know about pinning.
Closed Thread


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 01:43.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi