|
|
|
![]() |
|
|||||||
|
||||||||
|
|
Thread Tools |
Rating:
|
Display Modes |
|
#10
|
||||
|
||||
|
Re: Math Quiz 4
Here's a golfed version of the solution i came up with, ill neaten it up in a second
(2*sqrt(z^2+a^2)*sin(90-arcsin(a/sqrt(z^2+a^2))))/sin(180-(90-arcsin(a/sqrt(a^2+(z-y)^2))+180-(180-(180-arcsin(a/sqrt(a^2+(z-y)^2))+arcsin(a/sqrt(z^2+a^2)))+arcsin((bsin(180-(180-arcsin(a/sqrt(a^2+(z-y)^2))+arcsin(a/sqrt(z^2+a^2)))))/(y))))) E/ i just noticed that I accidentally wrote o instead of sin(o) when i golfed this code.... woooooooooooooooops 2e/ pay no attention to the golfed version above 3e/ fixed the golfed version. ignore the 180-180-180-... where y=DR z=DL a=OL b=DE/DF e/ explanation (i know i accidentally used "b" twice, in the expalantion "b" will be marked as "#") b (OD) = sqrt(z^2+a^2) c (<ODL)= arcsin(a/b) d (<DOL)= 90-c e (OR) = sqrt(a^2+(z-y)^2) f (<ORL)= arcsin(a/e) g (<ROL) = 90-f h (<DRO)= 180-f i (<DOR) = 180-(h+c) //temporary stepping out of alphabetical order l (DF) = b^2 + e^2 - 2*b*e*cos(i) //back again j (<DFO)= arcsin((bsini)/(l)) k (<ODF)= 180-(i+j) m (DE) = #L n (<DOC)= 90-C o (<DCO) = 180-(g+k) sin(n)/x = sin(o)/b :: 1/x = sin(o)/bsin(n) :: x = bsin(n)/sin(o) :: solution = 2 * DO * sin(<DOC)/sin(<DCO) Quote:
Last edited by Arhowk : 20-08-2014 at 13:10. |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|