Go to Post The version that finished nationals was about 50% aluminum and 50% the original PVC and we never had any member break. (structural member, not team member). - Gary Dillard [more]
Home
Go Back   Chief Delphi > Technical > Control System
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
 
 
Thread Tools Rating: Thread Rating: 7 votes, 5.00 average. Display Modes
Prev Previous Post   Next Post Next
  #13   Spotlight this post!  
Unread 07-10-2014, 18:16
Jared's Avatar
Jared Jared is offline
Registered User
no team
Team Role: Programmer
 
Join Date: Aug 2013
Rookie Year: 2012
Location: Connecticut
Posts: 602
Jared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond reputeJared has a reputation beyond repute
Re: 2015 Beta Testing - The Components are Here.

Quote:
Originally Posted by inkling16 View Post
I guess I still don't fully understand why we wouldn't be able to easily calculate Eavailable assuming we account for the internal resistance of the battery. We should be able to integrate the power over time to get the energy. Something like Eavailable(t) = Emax-(time integral of (V(t')*I(t') + I(t')^2*Rinternal) from t'=0 through t'=t) where V(t) is the terminal voltage of the battery at time t, I(t) is the current supplied by the battery at time t, and Rinternal is the internal resistance of the battery.

This should be all we need to calculate Eavailable, since the initial energy of the battery either has to turn into electric energy that moves through the circuit or turn into heat due to the internal resistance of the battery. I don't see anywhere else that the energy of the battery can go. The only thing I might not be considering here would be that Rinternal might not be a constant, but a function of current and/or temperature. Does anyone know if this is the case? Because if so, that could explain why the battery loses charge more quickly than expected at higher currents.
Check out the datasheet. The capacity of the battery is much different when the current is different. The battery is rated for 18 amp hours, which it can achieve when used in low current situations, but when used in FRC situations, the capacity is likely closer to 7 amp hours.

I don't know exactly why this is true, but I'd be willing to bet that the chemical reaction isn't quite as effective/efficient when it happens really quickly.
Reply With Quote
 


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 04:55.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi