Go to Post Earlier today, I finally saw a copy of the [WFA] essay that was submitted by my team (there will be a separate reckoning later with all those that kept this a secret from me). The narrative overwhelmed me. - dlavery [more]
Home
Go Back   Chief Delphi > Competition > Regional Competitions
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Closed Thread
Thread Tools Rating: Thread Rating: 41 votes, 5.00 average. Display Modes
  #1   Spotlight this post!  
Unread 28-03-2015, 12:19
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Analysis of team ranking

This year's game is unusual in that there is no defense and for the most part robots work on their own in parallel to score points. As a result I figured it's reasonable (even more than usual!) to try to compute the average number of points a robot contributes to its alliance. I wrote a quick python3 script that takes as input match data (tested on the DC regional, where my former team 449 is currently playing) and outputs my ranking of teams and the number of points I think they contribute to their alliance. Apologies for the variable names, but hopefully I made up for it in with the comments.

Rankings:

1 (3419, 73.704492305515487)
2 (1731, 46.312538656273205)
3 (1418, 39.472531653896525)
4 (1895, 38.799337600450862)
5 (3490, 36.294428293019763)
6 (1599, 34.28821369481841)
7 (1885, 32.629205449774474)
8 (1033, 32.348123760832848)
9 (1421, 30.478697284154272)
10 (5338, 29.040436495747031)
11 (623, 27.745489727319374)
12 (5549, 27.121269236479719)
13 (1389, 26.60584843249497)
14 (383, 23.671855927551672)
15 (4099, 22.375266604669307)
16 (449, 21.912210928023729)
17 (116, 21.449547070425396)
18 (5243, 19.808177358212305)
19 (612, 17.344396301222865)
20 (4456, 16.61331712295609)
21 (5569, 16.37413112815706)
22 (122, 15.839607260787915)
23 (2377, 15.709065445693666)
24 (3941, 14.395635096324398)
25 (614, 13.631250573400411)
26 (2537, 11.955265914302434)
27 (686, 11.401428768949312)
28 (4541, 9.7651476520334057)
29 (4242, 8.7906915069887415)
30 (5587, 8.488917324654544)
31 (2068, 8.4789566363119739)
32 (3373, 8.3192241916003127)
33 (4821, 7.4396295708618432)
34 (2186, 6.5217325036723395)
35 (3650, 6.196980101798685)
36 (2912, 5.8563204263368132)
37 (620, 5.783804197530789)
38 (53, 5.3467216070143158)
39 (4472, 4.7981247189600955)
40 (2421, 4.7603990054157492)
41 (4464, 4.6403121971023475)
42 (2964, 4.075077317496544)
43 (1123, 3.2348248124167291)
44 (1915, -0.067152495721547467)
45 (4949, -1.8884154681926013)
46 (5520, -2.1497370184179658)
47 (3748, -2.471672298659696)
48 (611, -3.0598363988393888)

Source code:
Code:
import numpy as np

# load scores, copied from http://frc-events.usfirst.org/2015/DCWA/qualifications
f = open("score")
lines = f.readlines()
data = [l.split() for l in lines]

# these are the columns red teams, blue teams, red scores, and blue scores
# end up in when I copy/paste
redcols = [6,7,8]
bluecols = [9,10,11]
redscorecol = 12
bluescorecol = 13

# get list of teams
teams = set()
for d in data:
    for tcol in (redcols + bluecols):
        teams.add(int(d[tcol]))
teams = list(teams)
teams.sort()

# get a mapping from team number to index for efficient lookup
teamindex = {}
for i in range(len(teams)):
    teamindex[teams[i]] = i

# enter each "match", where match = [red or blue teams, score]
# (i.e. 2 "matches" per actual match played, I'm assuming that
#  the two sides are independent because there is no defense
#  and that cooperatition points are on average the same score
#  a team would have accumulated with normal socring in the same time)

# each row of match data has an entry for each team, 1 if it 
# played or 0 if it didn't
# each entry of matchscores is the score
matchdata = []
matchscores = []
for d in data:
    for (tc,tcs) in [(redcols, redscorecol), (bluecols, bluescorecol)]:
        md = np.zeros(len(teams))
        for tcol in tc:
            md[teamindex[int(d[tcol])]] = 1
        matchdata.append(md)
        matchscores.append(int(d[tcs]))

matchdata = np.array(matchdata)
matchscores = np.array(matchscores)

# compute the amount of the score contributed by each team on average
teamscores = np.linalg.lstsq(matchdata, matchscores)

# print results, sorted in order of contribution
tcs = [(t, teamscores[0][teamindex[t]]) for t in teams]
tcs.sort(key=lambda x: x[1], reverse=True)
for i in range(len(tcs)):
    print(i+1, tcs[i])
  #2   Spotlight this post!  
Unread 28-03-2015, 12:24
Bongle's Avatar
Bongle Bongle is offline
Registered User
FRC #2702 (REBotics)
Team Role: Mentor
 
Join Date: Feb 2004
Rookie Year: 2002
Location: Waterloo
Posts: 1,069
Bongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond repute
Send a message via MSN to Bongle
Re: Analysis of team ranking

It would appear you've independently discovered what is commonly called OPR Although it works very well this year, it can also work well in more defense-heavy years. The main breakage for OPR is exponential scoring (2007) or piece-limited scoring (2011), or when it _really_ matters how resistant you are to scoring (2009).

As a guy that once wrote a OPR scraper way back in the day, I gotta say that's a fantasticly concise implementation
  #3   Spotlight this post!  
Unread 28-03-2015, 12:25
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Re: Analysis of team ranking

Additional comments:

- obviously there variance in team performance, so this won't be a perfect predictor
- these results list a couple teams as providing negative points on average -- this is fairly clearly not true. These teams probably contribute about 0 points on average. This actually gives a pretty good rough estimate of the precision of these numbers (error of ~3 should be expected on all numbers)
- if teams have strategies that involve working together in some way, this model does not account for that.
- if teams have strategies that interfere with each other (i.e. all 3 teams need to be fed at the feeding station to reach their full potential), this model does not account for that
  #4   Spotlight this post!  
Unread 28-03-2015, 12:28
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Re: Analysis of team ranking

@Bongle I was actually thinking of Moneyball as I wrote this. But I actually think this game is _even better_ than baseball for such analysis because robots aren't playing dramatically different positions in these matches --> all robots have equal opportunity to score points
  #5   Spotlight this post!  
Unread 28-03-2015, 12:30
Bongle's Avatar
Bongle Bongle is offline
Registered User
FRC #2702 (REBotics)
Team Role: Mentor
 
Join Date: Feb 2004
Rookie Year: 2002
Location: Waterloo
Posts: 1,069
Bongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond reputeBongle has a reputation beyond repute
Send a message via MSN to Bongle
Re: Analysis of team ranking

Quote:
- these results list a couple teams as providing negative points on average -- this is fairly clearly not true. These teams probably contribute about 0 points on average. This actually gives a pretty good rough estimate of the precision of these numbers (error of ~3 should be expected on all numbers)
That's not entirely true - the way the math works out, you end up solving for "the number of points added by that team being in an alliance". If a team tends to take fouls, gets in the way, blocks visibility, or breaks their alliance partners, they may end up with a negative value.

Similarly, it is possible for a team to have a positive value without ever scoring a single piece: if the team facilitates scoring in some way (good strategy, supplying parts, bringing a ramp, etc), they may still have a positive effect on the alliance's score.

Your other points about limitations are correct.
  #6   Spotlight this post!  
Unread 28-03-2015, 14:02
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,102
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by dakaufma View Post
I wrote a quick python3 script that takes as input match data ... and outputs my ranking of teams and the number of points I think they contribute to their alliance.
Would you please run a short experiment?

Attached is a ZIP file containing Qual Match data for all 67 events in 2015 weeks 1 through 4, in the column format described in your code (I included both tab-delimited and comma-delimited).

Please run your script on that data and tell us how long it takes the script to do the computation.


Attached Files
File Type: zip QualData.zip (144.4 KB, 15 views)
  #7   Spotlight this post!  
Unread 28-03-2015, 14:15
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,102
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by Ether View Post
Would you please run a short experiment?

Attached is a ZIP file containing Qual Match data for all 67 events in 2015 weeks 1 through 4, in the column format described in your code (I included both tab-delimited and comma-delimited).

Please run your script on that data and tell us how long it takes the script to do the computation.
Note: all the data is in one big file; you only need run the script once on that file (not 67 separate runs)


  #8   Spotlight this post!  
Unread 28-03-2015, 14:52
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Re: Analysis of team ranking

It runs out of memory after a few seconds computing least squares. I guess my script was too quick and dirty to handle that much data

Ok, closed out of my memory-hog browser and reran it. It finished in 68 seconds. It's single threaded --> only using 1 core. I don't know the exact specs but I'm using an old laptop. If you want it to run faster you could get a reasonable estimate running the script for each regional and averaging the results for teams that competed in multiple regionals. My script basically ran instantly on the DC regional alone, it just didn't scale well.

Results:

1 (1114, 119.53710628381191)
2 (2056, 107.52392526361433)
3 (1730, 98.937520154912633)
4 (2481, 85.411141027422389)
5 (1678, 83.604692998775761)
6 (987, 81.614933990522147)
7 (118, 80.969024034928296)
8 (4488, 80.539400149979258)
9 (254, 79.885031034931174)
10 (148, 79.432991922526838)
11 (5406, 78.607729049050903)
12 (1519, 78.606114913994432)
13 (1619, 77.525461715196158)
14 (1658, 72.769643357190205)
15 (3130, 71.271318091324432)
16 (1671, 70.02262062115436)
17 (2338, 68.377599976884255)
18 (1280, 68.31086262054076)
19 (3683, 68.046518730572274)
20 (314, 67.063058451290729)
21 (4143, 66.197146406242695)
22 (2085, 65.826088138212199)
23 (1756, 65.300090499752486)
24 (225, 64.935706448058212)
25 (1538, 64.559840785724475)
26 (330, 64.541264057923442)
27 (2852, 64.483030815000632)
28 (1986, 62.974425411332938)
29 (2451, 62.637597604073804)
30 (2974, 60.564349115146001)
31 (1023, 60.560211511217332)
32 (1983, 59.916674128430934)
33 (744, 59.594728708265407)
34 (1657, 59.279400181300687)
35 (67, 58.964359968912603)
36 (2122, 58.817777660610751)
37 (2342, 57.489327516287716)
38 (1640, 57.464812178955)
39 (2826, 56.916928984985773)
40 (234, 56.858881704686439)
41 (3339, 56.533409767618949)
42 (4655, 56.39313720643888)
43 (3230, 56.122255030023631)
44 (1574, 55.625450146975965)
45 (624, 55.340768974856552)
46 (2077, 55.213700500454443)
47 (525, 55.123176093827624)
48 (2783, 54.867531033295869)
49 (303, 54.677252325474406)
50 (2512, 54.663228166283453)
51 (1156, 53.95917064433668)
52 (701, 53.489926552157726)
53 (135, 53.310632416341505)
54 (3824, 52.981920713390842)
55 (4678, 52.90258841628895)
56 (2137, 52.82827564039772)
57 (1806, 52.545135953520244)
58 (4201, 52.100455606412289)
59 (4967, 51.976661185189229)
60 (58, 51.708557689346009)
61 (1569, 50.999721751403754)
62 (2587, 50.879055731499093)
63 (3663, 50.352150843306362)
64 (3360, 50.32364073573774)
65 (70, 50.212423608681007)
66 (456, 49.514397347218271)
67 (226, 49.421619066877071)
68 (3419, 49.291886530691805)
69 (4613, 49.182337568239383)
70 (2383, 48.952668799007341)
71 (4451, 48.461565771037783)
72 (4039, 48.428887067643302)
73 (60, 48.304027027456911)
74 (3452, 48.237009235381947)
75 (694, 48.146194119499853)
76 (2643, 47.617699872486028)
77 (85, 47.524384916070105)
78 (1403, 47.469950277471035)
79 (494, 47.374147160288466)
80 (1918, 47.291935686802972)
81 (287, 47.257974979802917)
82 (2386, 46.953430407180903)
83 (203, 46.861955923046182)
84 (1024, 46.697459369030227)
85 (876, 46.137245094936418)
86 (3646, 46.13325578237896)
87 (340, 46.084590782880028)
88 (3132, 45.713812619738299)
89 (4564, 45.704005687502573)
90 (71, 45.592449645849975)
91 (2337, 45.302005071186898)
92 (3200, 45.067571065424303)
93 (379, 44.960948960140477)
94 (2054, 44.735136796993629)
95 (1208, 44.698482053595882)
96 (78, 44.46540330346042)
97 (2767, 44.397595621836118)
98 (1676, 44.241945432579165)
99 (2231, 44.074739609953014)
100 (1876, 44.059135373758906)
101 (5188, 44.006924999206518)
102 (33, 43.991463573919681)
103 (662, 43.937410242633831)
104 (107, 43.844215107033079)
105 (2883, 43.838433292634448)
106 (126, 43.680710097846031)
107 (4522, 43.658797513513953)
108 (125, 43.554274627035511)
109 (4539, 43.541714417941485)
110 (2457, 43.313197516131233)
111 (1768, 43.202978983685014)
112 (2062, 42.91184275827608)
113 (3996, 42.878462653349217)
114 (1218, 42.221423588184592)
115 (4947, 42.21385679919382)
116 (4028, 42.184039856147834)
117 (4003, 42.058582095894693)
118 (230, 41.974917059019731)
119 (610, 41.906402824077851)
120 (2607, 41.670540732672599)
121 (4917, 41.384462943129392)
122 (3688, 41.147751248112812)
123 (3930, 41.033422854244797)
124 (1493, 40.986924808173157)
125 (4500, 40.741418876306227)
126 (4118, 40.695131685614619)
127 (971, 40.523141542947506)
128 (3238, 40.466262103026601)
129 (359, 40.422448697174524)
130 (61, 40.330053037398599)
131 (3418, 40.150604856512359)
132 (48, 40.137305510265087)
133 (2996, 40.028508239671567)
134 (2619, 39.968708976433774)
135 (5030, 39.877431370188553)
136 (263, 39.839439286180657)
137 (4048, 39.825826430840849)
138 (1296, 39.808174436676225)
139 (56, 39.662074105094518)
140 (4049, 39.655310597148734)
141 (4946, 39.601027916048579)
142 (3604, 39.539475208943301)
143 (348, 39.481859806964366)
144 (1318, 39.370452934396013)
145 (3467, 39.295360485121932)
146 (4911, 39.224358414364175)
147 (3616, 39.110279455887301)
148 (5618, 39.086526813133673)
149 (2635, 38.980266823053611)
150 (2930, 38.840601375514616)
151 (3374, 38.81788764505211)
152 (4256, 38.784719563512631)
153 (973, 38.463844062433054)
154 (51, 38.334314781676767)
155 (384, 38.201138768628411)
156 (2590, 38.147515826742477)
157 (4096, 38.116308218237869)
158 (4623, 38.092545615566564)
159 (4952, 37.86114845595975)
160 (133, 37.828067879761136)
161 (1718, 37.787600674391747)
162 (2474, 37.692730385543939)
163 (3743, 37.59312775479782)
164 (1816, 37.542280174166791)
165 (2410, 37.496877654564656)
166 (1501, 37.104342080915757)
167 (3620, 37.037606938363133)
168 (5122, 36.982541576210828)
169 (4481, 36.865262298598083)
170 (3937, 36.841636721001414)
171 (1647, 36.751313815118657)
172 (3284, 36.74635714111696)
173 (1310, 36.716915159692995)
174 (3711, 36.708942403153074)
175 (2168, 36.657044244067841)
176 (219, 36.622331677278126)
177 (4618, 36.592685886997145)
178 (4009, 36.541388801745121)
179 (179, 36.46999930280974)
180 (192, 36.428357257530422)
181 (1511, 36.412379877666389)
182 (2468, 36.411558461182182)
183 (1466, 36.410653763267597)
184 (176, 36.341368086411364)
185 (3954, 36.106465544323413)
186 (236, 36.030241466107022)
187 (1065, 35.866091693146807)
188 (217, 35.739433335936802)
189 (293, 35.714822450042767)
190 (3171, 35.700953362598391)
191 (4450, 35.675245209103132)
192 (3478, 35.497911882995631)
193 (1025, 35.33059600491984)
194 (2067, 35.302384982157086)
195 (858, 35.220534346307758)
196 (20, 35.213858881906404)
197 (3787, 35.200316831586413)
198 (3245, 35.154820267538746)
199 (3947, 34.936457120925624)
200 (5124, 34.900427199797058)
201 (1690, 34.843920361381095)
202 (2605, 34.842650608275285)
203 (469, 34.826502670309935)
204 (88, 34.781860065335088)
205 (4471, 34.776523328229906)
206 (3055, 34.772009951076569)
207 (1629, 34.734579749225233)
208 (492, 34.62041348642861)
209 (4859, 34.584359681765029)
210 (2470, 34.584346687341977)
211 (188, 34.462145048031729)
212 (5155, 34.435692705316441)
213 (2522, 34.35816391473486)
214 (34, 34.173866945917425)
215 (5415, 34.146785509913705)
216 (1502, 34.067087880802461)
217 (4001, 34.064597422588839)
218 (4055, 33.916169496312733)
219 (1094, 33.883434363608139)
220 (1523, 33.871609512708311)
221 (5479, 33.849391237999257)
222 (3528, 33.828080185259267)
223 (5069, 33.77734334023711)
224 (3574, 33.690314713091702)
225 (1572, 33.650008671190953)
226 (2170, 33.575593261620348)
227 (3015, 33.547013037090167)
228 (3959, 33.523300871264311)
229 (3044, 33.406171382153723)
230 (904, 33.342751678172135)
231 (846, 33.327700541596251)
232 (4377, 33.305432679592052)
233 (670, 33.259397175471463)
234 (3309, 33.247368517097016)
235 (5753, 33.236142903316946)
236 (2169, 33.094046510981954)
237 (5492, 33.046067910839866)
238 (4061, 33.01891123496646)
239 (280, 32.985235881445348)
240 (1937, 32.945294053227798)
241 (4330, 32.895140642192821)
242 (2959, 32.807809147273616)
243 (4381, 32.793946338233482)
244 (245, 32.711707797251968)
245 (292, 32.579249817782227)
246 (4914, 32.53912196307197)
247 (246, 32.470985984479007)
248 (2471, 32.404626971136231)
249 (4646, 32.384273327934203)
250 (1225, 32.374217436032403)
251 (1261, 32.345344589914419)
252 (3618, 32.319420811573949)
253 (706, 32.087559612208366)
254 (2489, 32.080162945238371)
255 (5674, 32.068028144346975)
256 (365, 32.063866801911502)
257 (2550, 31.968333087158392)
258 (2907, 31.963996692538135)
259 (4543, 31.937642440156992)
260 (2344, 31.883372165807916)
261 (5172, 31.746782970946477)
262 (3968, 31.738032978366853)
263 (4004, 31.660944083506916)
264 (5603, 31.656178443794023)
265 (3547, 31.624098353856535)
266 (27, 31.615954801848815)
267 (5511, 31.59945800797674)
268 (4485, 31.588001091120738)
269 (1595, 31.558596969881869)
270 (3539, 31.556723877535198)
271 (2478, 31.435819566154908)
272 (3039, 31.41599321476928)
273 (447, 31.408100879172181)
274 (3955, 31.397208810781596)
275 (2040, 31.396818339564696)
276 (4384, 31.36827170756532)
277 (5112, 31.338720289318339)
278 (1712, 31.225301368796138)
279 (1763, 31.219614687869981)
280 (1319, 31.027832060889921)
281 (5053, 31.026096768004098)
282 (316, 31.004945681413208)
283 (195, 31.002772387355328)
284 (138, 30.978073568382566)
285 (5502, 30.96655526350947)
286 (1477, 30.854716412418391)
287 (5776, 30.833279403898562)
288 (45, 30.771497026266104)
289 (3588, 30.730249883028147)
290 (222, 30.661345061396982)
291 (2081, 30.585445374235022)
292 (5554, 30.579978307945261)
293 (1720, 30.573435485801873)
294 (4624, 30.501204083289633)
295 (4498, 30.421878762510477)
296 (2526, 30.412593900599504)
297 (5758, 30.403677283741686)
298 (3003, 30.289741529784614)
299 (383, 30.274427792634622)
300 (1723, 30.218861857075929)
301 (811, 30.192776246588522)
302 (342, 30.168485860212456)
303 (4189, 30.13965943188408)
304 (171, 30.111080057728859)
305 (1885, 30.08157855417863)
306 (3501, 30.056119432123456)
307 (885, 30.042265795522237)
308 (4325, 29.978999286032156)
309 (3612, 29.972457662016737)
310 (433, 29.965135411743013)
311 (343, 29.815721870600417)
312 (4550, 29.783543177508189)
313 (5735, 29.760366282137795)
314 (3451, 29.623168415939425)
315 (193, 29.597381522938797)
316 (1665, 29.477226112588852)
317 (5038, 29.371603785511478)
318 (5013, 29.367568082295421)
319 (1577, 29.351057855544511)
320 (1522, 29.329602508326648)
321 (3623, 29.319629407542678)
322 (3944, 29.165672846015873)
323 (5254, 29.152950147461201)
324 (3570, 29.146301900278111)
325 (308, 29.108891367260316)
326 (2867, 29.07047844203802)
327 (4905, 29.050359447749955)
328 (4103, 29.008081199277097)
329 (93, 29.002439064178919)
330 (269, 28.990050531142835)
331 (3357, 28.987813199246801)
332 (4906, 28.987217737312413)
333 (1492, 28.931717575968353)
334 (1735, 28.843015541771116)
335 (5442, 28.724169408312502)
336 (3336, 28.712610544003628)
337 (5413, 28.696880079236056)
338 (4364, 28.611574275852828)
339 (1775, 28.584899036665753)
340 (3065, 28.525796636906136)
341 (2612, 28.469954244499142)
342 (2052, 28.430475381231936)
343 (157, 28.411865437907171)
344 (4586, 28.402948306541667)
345 (418, 28.385761801791819)
346 (1706, 28.370790285515668)
347 (538, 28.361433414481329)
348 (166, 28.36103280869056)
349 (2834, 28.349114945963684)
350 (862, 28.341719529492536)
351 (339, 28.312336861693979)
352 (2501, 28.291988136942045)
353 (5332, 28.221843780634114)
354 (3546, 28.219951278962149)
355 (1089, 28.179779922305691)
356 (74, 28.170630647060285)
357 (16, 28.153537909491376)
358 (3970, 28.068452679409923)
359 (2016, 28.054055944982938)
360 (4909, 28.046294197793365)
361 (1732, 28.004259847789143)
362 (5722, 28.000893562008127)
363 (5470, 27.964602396088338)
364 (4505, 27.957193742959475)
365 (1507, 27.918932823151927)
366 (2609, 27.881283715612394)
367 (3735, 27.842927062337381)
368 (1325, 27.83399855612867)
369 (2771, 27.805249600837143)
370 (3234, 27.777086187904139)
371 (364, 27.773516882454661)
372 (1287, 27.695541678956054)
373 (868, 27.686820418135625)
374 (4343, 27.674281064913401)
375 (1099, 27.628699640049589)
376 (4991, 27.614565128957356)
377 (4681, 27.606551378589774)
378 (2655, 27.585967703038538)
379 (967, 27.543757884969985)
380 (1209, 27.49029315446089)
381 (2075, 27.489002477372793)
382 (4546, 27.487066617423164)
383 (3635, 27.48356561968173)
384 (3250, 27.477190342232095)
385 (2506, 27.464706103391794)
386 (2228, 27.460322730350228)
387 (5638, 27.427765735683632)
388 (4499, 27.40789367631136)
389 (1421, 27.404206618353694)
390 (1592, 27.386817099943038)
391 (3260, 27.365005454713454)
392 (854, 27.359701627787871)
393 (488, 27.357071384709442)
394 (283, 27.340562809508832)
395 (4196, 27.251498552372244)
396 (4075, 27.247775472572336)
397 (3883, 27.212920975158571)
398 (5031, 27.198910831670158)
399 (3166, 27.196904723704534)
400 (1737, 27.169193486402385)
401 (5533, 27.158765140173511)
402 (4179, 27.121111391478998)
403 (3753, 27.089296419821817)
404 (3556, 27.083479235450824)
405 (229, 27.079429415775564)
406 (5440, 27.010685856862828)
407 (829, 27.001233828525692)
408 (3512, 26.930904261815289)
409 (2877, 26.881231135426113)
410 (25, 26.874956272980398)
411 (5457, 26.866288001868522)
412 (816, 26.855177040462138)
413 (3242, 26.817236552652037)
414 (3999, 26.768375771352677)
415 (2637, 26.754207885873239)
416 (2556, 26.722268324369626)
417 (2164, 26.714139546461933)
418 (5416, 26.712108158331368)
419 (3117, 26.689489008313181)
420 (5509, 26.625666975877792)
421 (5102, 26.524853029673466)
422 (1596, 26.515223320474583)
423 (1249, 26.493278542675782)
424 (1726, 26.489644927212183)
425 (3005, 26.419255081805929)
426 (5653, 26.400498089799498)
427 (237, 26.35761010854295)
428 (2102, 26.347818573916165)
429 (743, 26.342390803045571)
430 (857, 26.315470606750107)
431 (1458, 26.247934551821654)
432 (2149, 26.246563656766824)
433 (4183, 26.202643599250163)
434 (354, 26.199852232691846)
435 (5489, 26.192861587438728)
436 (581, 26.152928799044968)
437 (4130, 26.132089695198701)
438 (5176, 26.114821763716343)
439 (3322, 26.053936588046433)
440 (386, 26.049864401551556)
441 (1165, 26.045173350642266)
442 (1785, 25.985391083201186)
443 (3201, 25.868153944012217)
444 (3990, 25.856933670324047)
445 (5506, 25.824466384694141)
446 (5494, 25.736525498289623)
447 (3146, 25.648217719441675)
448 (5478, 25.640319574953956)
449 (5046, 25.581618109196217)
450 (4253, 25.578438118943854)
451 (1285, 25.573906488215286)
452 (1746, 25.558401756436641)
453 (558, 25.535460634011994)
454 (931, 25.520646102671648)
455 (4011, 25.488524319439261)
456 (540, 25.477007289536935)
457 (1351, 25.444354065912695)
458 (2614, 25.428661236815)
459 (1, 25.408471248651491)
460 (1339, 25.403370133527815)
461 (4269, 25.402571237541043)
462 (4362, 25.335001467891367)
463 (4215, 25.321098874192337)
464 (4158, 25.265544852318435)
465 (156, 25.250893811560466)
466 (1736, 25.231376918344381)
467 (5534, 25.198997131282795)
468 (4977, 25.170821198415698)
469 (233, 25.120302841637574)
470 (5584, 25.077052317020517)
471 (5160, 25.042113801447705)
472 (461, 25.032494768182929)
473 (1410, 25.013531264680662)
474 (1831, 24.974062121555651)
475 (2531, 24.925176248962295)
476 (2202, 24.917813178518919)
477 (2990, 24.90985975858867)
478 (5559, 24.907175327856649)
479 (2551, 24.8970475069233)
480 (571, 24.893484720289351)
481 (5431, 24.870041892738069)
482 (2648, 24.831917013848315)
483 (5229, 24.83067765659808)
484 (3310, 24.824415490377742)
485 (1757, 24.796343961599742)
486 (4237, 24.795618934831069)
487 (3928, 24.769246278838935)
488 (2213, 24.672852947668602)
489 (3151, 24.655530284233262)
490 (2443, 24.616749722793838)
491 (155, 24.568328214519163)
492 (4007, 24.562668016305732)
493 (3602, 24.478349870794311)
494 (207, 24.46932756768506)
495 (5260, 24.468588847777415)
496 (3971, 24.352750741095846)
497 (3276, 24.351690661211929)
498 (3770, 24.342387931921142)
499 (4308, 24.33326050289104)
500 (2791, 24.292334210032177)
501 (1943, 24.256609575817777)
502 (3277, 24.139806278879938)
503 (597, 24.087137762573075)
504 (1329, 24.051146287478094)
505 (2705, 23.988572780254273)
506 (2405, 23.96604908177919)
507 (3072, 23.942123315723901)
508 (319, 23.914647345917004)
509 (696, 23.898129454412086)
510 (1944, 23.859773682099213)
511 (5291, 23.845895217715078)
512 (1946, 23.839903123590258)
513 (1985, 23.792378603220055)
514 (3314, 23.774708888486369)
515 (2035, 23.77027236158327)
516 (5283, 23.768924491405429)
517 (4205, 23.76820722281661)
518 (527, 23.764300900932476)
519 (4761, 23.762705729626795)
520 (3081, 23.759466090955936)
521 (4127, 23.741830191797586)
522 (3974, 23.610476007878777)
523 (4391, 23.501703005002078)
524 (5308, 23.468675514945382)
525 (1197, 23.460492419928674)
526 (3329, 23.423165403867699)
527 (1677, 23.413867182628856)
528 (1102, 23.410399988048219)
529 (66, 23.3580020695439)
530 (2437, 23.33438482972258)
531 (5588, 23.326526737211335)
532 (2053, 23.286258420904929)
533 (1902, 23.216979961068233)
534 (1895, 23.210737186908329)
535 (1649, 23.194970035323269)
536 (1884, 23.18561336047128)
537 (4988, 23.16059120553939)
538 (1262, 23.149282487776187)
539 (4154, 23.145789535504626)
540 (4796, 23.134497357904614)
541 (5505, 23.131600667563504)
542 (5216, 23.116968444676235)
543 (1189, 23.111097805183935)
544 (2212, 23.065242967893951)
545 (5204, 23.037899349629139)
546 (1731, 23.014867379084713)
547 (3489, 23.010709508006872)
548 (3241, 23.009760680035722)
549 (294, 22.992170326613579)
550 (1817, 22.988340596623264)
551 (3393, 22.967535389348555)
552 (3504, 22.930810388359046)
553 (2503, 22.892101032170096)
554 (3305, 22.871323882874165)
555 (1825, 22.85354717665523)
556 (568, 22.819026088705687)
557 (5325, 22.771882991617289)
558 (5022, 22.74395096045043)
559 (2204, 22.740354782726605)
560 (86, 22.723993042025114)
561 (948, 22.69974907875239)
562 (1073, 22.699475734579735)
563 (4915, 22.675237851735353)
564 (2234, 22.626742380844288)
565 (175, 22.622326590617071)
566 (1622, 22.573939387584964)
567 (3760, 22.550251396840942)
568 (4728, 22.522485324954719)
569 (178, 22.494734676069559)
570 (5585, 22.490287813383752)
571 (1714, 22.477216357374804)
572 (3719, 22.476376241201358)
573 (5437, 22.462969760388496)
574 (3600, 22.450562221367431)
575 (3243, 22.441758175955083)
576 (5684, 22.441245923010403)
577 (1927, 22.398009040701957)
578 (3875, 22.36318731824155)
579 (501, 22.346881506760241)
580 (3019, 22.336711792350414)
581 (3812, 22.336190029744166)
582 (2851, 22.291987828450502)
583 (279, 22.284161744099237)
584 (2079, 22.256111931630898)
585 (111, 22.255412690913264)
586 (2191, 22.243994326616296)
587 (11, 22.236303063159539)
588 (3382, 22.22489546579655)
589 (2813, 22.224351680612681)
590 (1533, 22.201334455103492)
591 (3786, 22.192927794211169)
592 (5403, 22.172564133152999)
593 (1137, 22.166796827673675)
594 (498, 22.050655019947428)
595 (3522, 22.039310116135201)
596 (3656, 22.036479578419232)
597 (2197, 22.022906686496285)
598 (3122, 22.02245086679854)
599 (4585, 22.003943019534713)
600 (4950, 21.999012154733705)
601 (1071, 21.991271288301149)
602 (4453, 21.984544244316115)
603 (2972, 21.981884692632978)
604 (4513, 21.923903970514139)
605 (4592, 21.903251302181051)
606 (1250, 21.885124547775021)
607 (5773, 21.8050033836167)
608 (2496, 21.763213345896471)
609 (2141, 21.757556863088009)
610 (5279, 21.728573656090738)
611 (1598, 21.683974511186651)
612 (5471, 21.681957414106087)
613 (334, 21.673906948701951)
614 (3495, 21.666175129040173)
615 (4401, 21.656006334874323)
616 (1711, 21.64756907413269)
617 (4021, 21.617023181537292)
618 (2412, 21.607659824446625)
619 (5057, 21.576230546121593)
620 (4174, 21.575292429727281)
621 (806, 21.556058712361626)
622 (5290, 21.501114519232758)
623 (1124, 21.472873010563454)
624 (834, 21.466525435637557)
625 (2425, 21.463733359972053)
626 (955, 21.460952140695788)
627 (3957, 21.444110458879557)
628 (3986, 21.433621217860285)
629 (123, 21.418294860597729)
630 (842, 21.411612648719053)
631 (2632, 21.392425871993144)
632 (1717, 21.382014873587586)
633 (5572, 21.381270290174221)
634 (2642, 21.361105455870035)
635 (4031, 21.296528087592495)
636 (57, 21.253852214120684)
637 (5501, 21.250369856104228)
638 (2509, 21.239646628731972)
639 (1635, 21.223152180785203)
640 (613, 21.221352547706225)
641 (103, 21.208393062949973)
642 (2521, 21.20046280854822)
643 (3103, 21.137734484783916)
644 (3102, 21.120964518264067)
645 (5111, 21.115219853275239)
646 (1796, 21.055097834040431)
647 (4608, 21.027430725215346)
648 (5265, 20.996555357255229)
649 (3566, 20.976517783716741)
650 (4397, 20.972076338688751)
651 (5148, 20.950365655527509)
652 (533, 20.946818400739033)
653 (573, 20.946223795891861)
654 (3767, 20.933057539827956)
655 (3615, 20.91404677156023)
656 (272, 20.90741982869395)
657 (1517, 20.885307059082365)
658 (5703, 20.875837188860928)
659 (1382, 20.869661914616767)
660 (4368, 20.863981737918461)
661 (2175, 20.846496496895064)
662 (698, 20.832769525206366)
663 (1100, 20.830644779313904)
664 (4726, 20.82975599567628)
665 (3606, 20.821212300912279)
666 (3939, 20.78408953739287)
667 (3882, 20.773326818961106)
668 (2039, 20.75195459336086)
669 (1700, 20.745976388516869)
670 (2415, 20.712627303502025)
671 (5194, 20.69982992193961)
672 (4711, 20.685695643827021)
673 (2135, 20.674763059664784)
674 (3598, 20.671487024040264)
675 (59, 20.67082615115234)
676 (5253, 20.627455125451668)
677 (4087, 20.621834467806096)
678 (5504, 20.613410280776371)
679 (295, 20.609970139894745)
680 (3515, 20.605327460501627)
681 (3859, 20.599679140345003)
682 (2358, 20.599517920085155)
683 (4907, 20.560408601315125)
684 (4216, 20.538345428694534)
685 (3759, 20.534310914724205)
686 (3668, 20.524474379715105)
687 (3965, 20.519829196678579)
688 (1644, 20.517058083695609)
689 (1143, 20.51364883545704)
690 (3669, 20.50621730191164)
691 (4994, 20.496239306192347)
692 (2395, 20.484554422013325)
693 (399, 20.478784350342771)
694 (5153, 20.477097852191111)
695 (1807, 20.443420545302324)
696 (639, 20.424124879689508)
697 (1425, 20.418613585610931)
698 (5232, 20.372615284547333)
699 (1811, 20.358042526797519)
700 (4132, 20.348361227175065)
701 (75, 20.312434113078222)
702 (3352, 20.294342421637019)
703 (4774, 20.271964716485833)
704 (2252, 20.269281221312745)
705 (999, 20.257448452243953)
706 (5472, 20.233109807202627)
707 (5098, 20.206652133972479)
708 (3294, 20.199088499237295)
709 (4300, 20.196824037553895)
710 (4819, 20.142772033172811)
711 (5697, 20.135191081913579)
712 (4027, 20.128945097523612)
713 (4786, 20.112769676877193)
714 (3525, 20.074066373266447)
715 (3750, 20.003349185821698)
716 (3164, 20.00318695127693)
717 (1290, 19.998429305792037)
718 (3402, 19.963452320746779)
719 (4320, 19.934394320002692)
720 (3969, 19.934020793689331)
721 (3043, 19.929164341279854)
722 (2046, 19.927736407391333)
723 (5152, 19.921093956890672)
724 (1388, 19.919786511157774)
725 (3653, 19.900408922982155)
726 (121, 19.870447217185774)
727 (204, 19.870172433024365)
728 (3494, 19.867707794654315)
729 (1506, 19.85427544783245)
730 (1793, 19.851499394493729)
731 (4484, 19.836532798491461)
732 (5782, 19.734754867749025)
733 (3627, 19.656964887436551)
734 (5498, 19.64400006093015)
735 (1002, 19.578437567657723)
736 (5257, 19.568797566534709)
737 (663, 19.55985605338244)
738 (223, 19.556192348679261)
739 (3476, 19.532778663217034)
740 (835, 19.486856422127591)
741 (3940, 19.454566710180305)
742 (4398, 19.443773566177452)
743 (3933, 19.431109610432713)
744 (5006, 19.424768833019421)
745 (781, 19.394640549751543)
746 (4561, 19.376356523281775)
747 (5562, 19.354058271289801)
748 (3572, 19.298784738372561)
749 (5786, 19.275559207280764)
750 (2626, 19.266820056465637)
751 (2523, 19.24339813692086)
752 (1058, 19.208219861093184)
753 (4361, 19.203293453128811)
754 (3624, 19.193219253970724)
755 (4135, 19.17003097999223)
756 (703, 19.137382894726191)
757 (1747, 19.131570507443527)
758 (5159, 19.129308323590461)
759 (4476, 19.127694510286311)
760 (5224, 19.11794310698221)
761 (3863, 19.108176940904585)
762 (2363, 19.09762928436373)
763 (5616, 19.092580661464389)
764 (145, 19.070928637117422)
765 (3466, 19.045890971307642)
766 (1778, 19.014774034027209)
767 (2013, 19.009283821379334)
768 (5745, 18.958538515658219)
769 (4167, 18.895338865366586)
770 (5535, 18.810140729397169)
771 (3239, 18.775152281261015)
772 (5316, 18.766065768949531)
773 (1396, 18.755852133075027)
774 (5748, 18.741491633925129)
775 (4352, 18.739111351242332)
776 (4779, 18.738941051604932)
777 (4568, 18.729133674728729)
778 (1802, 18.727751875716713)
779 (2944, 18.713871659599715)
780 (716, 18.704078007850036)
781 (2662, 18.676354348035918)
782 (2484, 18.640488825155728)
783 (5595, 18.618142009229086)
784 (4089, 18.581765094391962)
785 (4856, 18.525602201389578)
786 (2876, 18.517233388967099)
787 (3173, 18.504386227156978)
788 (1648, 18.422214075604217)
789 (116, 18.421045728294644)
790 (4057, 18.380339251548243)
791 (1072, 18.379497442483864)
792 (949, 18.370295133302829)
793 (5473, 18.359935496087463)
794 (3958, 18.356126478663448)
795 (5610, 18.354535033988721)
796 (151, 18.333925908157642)
797 (2183, 18.322072929617125)
798 (4160, 18.281576736122421)
799 (122, 18.214607404187337)
800 (5223, 18.151735994285332)
801 (4074, 18.118648113724085)
802 (4983, 18.093660465622044)
803 (870, 18.086343943364643)
804 (5402, 18.059580017368077)
805 (4276, 18.04969943920538)
806 (1178, 18.049257595300457)
807 (3718, 18.028418757281401)
808 (4511, 18.008724421990181)
809 (4469, 18.002453518223891)
810 (3236, 17.99097918418579)
811 (1662, 17.980949334331488)
812 (172, 17.954077908971584)
813 (2147, 17.947042394494247)
814 (1529, 17.900406629924753)
815 (5614, 17.887939973749319)
816 (4281, 17.871742299847789)
817 (4744, 17.856367668561557)
818 (5167, 17.834360080988073)
819 (2180, 17.832224662809928)
820 (2976, 17.82424809093397)
821 (3158, 17.807651815793751)
822 (5047, 17.790119884719516)
823 (704, 17.784954830923017)
824 (5712, 17.778939960252252)
825 (5460, 17.75714626160628)
826 (691, 17.756519531277682)
827 (2555, 17.749170428707604)
828 (3506, 17.720795334880698)
829 (5669, 17.720697582882611)
830 (3822, 17.650689785071062)
831 (4784, 17.650338102306527)
832 (4528, 17.626033466267149)
833 (2998, 17.622566538624)
834 (3674, 17.622172298717889)
835 (4547, 17.602431879719401)
836 (213, 17.580180770481423)
837 (5687, 17.574190750185984)
838 (2486, 17.56590545601799)
839 (3386, 17.552891375204727)
840 (3218, 17.542533317110582)
841 (1557, 17.534562029374232)
842 (3098, 17.52540740181589)
843 (5475, 17.479240344191396)
844 (3388, 17.466891304704074)
845 (5114, 17.45725893834593)
846 (4980, 17.447831833771133)
847 (2534, 17.418364044152817)
848 (3083, 17.409166983389035)
849 (3853, 17.407922151194114)
850 (4930, 17.385910716224167)
851 (1322, 17.370197162857977)
852 (1836, 17.361554739289296)
853 (839, 17.351915439827515)
854 (2682, 17.341308243825424)
855 (1683, 17.313541058385653)
856 (231, 17.227112636493821)
857 (4073, 17.214985918333539)
858 (4473, 17.160841977085987)
859 (4587, 17.143260828505692)
860 (4082, 17.083426875060535)
861 (4674, 17.033176041232668)
862 (3794, 17.029097891029597)
863 (5710, 17.019588891840602)
864 (4956, 17.017962168069211)
865 (5158, 17.014127941546995)
866 (5484, 17.008313823361469)
867 (3561, 16.98532270499992)
868 (2192, 16.936130181382751)
869 (4060, 16.896279181327685)
870 (3176, 16.858687819220545)
871 (1018, 16.845939143909106)
872 (2594, 16.845775500024565)
873 (1777, 16.821511849403883)
874 (2493, 16.807659758576104)
875 (2194, 16.805341432522869)
876 (5326, 16.779318409345954)
877 (5525, 16.728882137431771)
878 (4238, 16.704161483148152)
879 (41, 16.701352712131822)
880 (1660, 16.688200688045555)
881 (3009, 16.681873022195916)
882 (1255, 16.679846731127377)
883 (4342, 16.67322367549454)
884 (5526, 16.650175118139295)
885 (3603, 16.626682838075919)
886 (5538, 16.617416870335468)
887 (810, 16.61387780311648)
888 (5563, 16.587885074167652)
889 (2403, 16.584760208561192)
890 (1051, 16.582749263313875)
891 (2423, 16.58082916824111)
892 (5529, 16.576196619723461)
893 (5724, 16.574886232546113)
894 (1241, 16.570859403990205)
895 (4181, 16.57042155478662)
896 (2914, 16.567878082951328)
897 (4995, 16.520169048889493)
898 (2574, 16.496256533559922)
899 (2836, 16.450461622947401)
900 (4670, 16.429266016333393)
901 (5420, 16.383853838111349)
902 (5126, 16.368483825734785)
903 (3034, 16.357789432634039)
904 (5754, 16.352755365075019)
905 (3133, 16.301818674214612)
906 (2838, 16.300815698868327)
907 (1923, 16.292174979580583)
908 (3295, 16.288037728321932)
909 (5129, 16.285769376144756)
910 (2335, 16.281976523734276)
911 (4735, 16.28097274592303)
912 (321, 16.245780394971334)
913 (5634, 16.240412035485541)
914 (3256, 16.22464139376121)
915 (2823, 16.183172073596655)
916 (1254, 16.182400676351676)
917 (3410, 16.161424203585611)
918 (5411, 16.159694593012638)
919 (3459, 16.158664891872494)
920 (5679, 16.110601433084422)
921 (4319, 16.10232159222387)
922 (4231, 16.080306640569411)
923 (484, 16.075271455357871)
924 (3298, 16.074006308460017)
925 (3140, 16.06386882437479)
926 (2935, 16.06261407259549)
927 (2559, 16.052871876840946)
928 (5109, 16.042955129287336)
929 (3455, 16.033986604486945)
930 (5692, 16.030842710620277)
931 (3802, 16.023699669108854)
932 (5524, 16.020433266738245)
933 (4285, 15.997355092676656)
934 (329, 15.996037602203984)
935 (1160, 15.969691834170664)
936 (869, 15.957610516276912)
937 (5166, 15.940930308898858)
938 (3658, 15.940068296862869)
939 (2374, 15.938502726872795)
940 (4069, 15.935786098449423)
941 (5071, 15.923425296895171)
942 (5428, 15.914504889935639)
943 (3225, 15.882068358965819)
944 (4122, 15.873784164428654)
945 (2679, 15.859215089295322)
946 (5410, 15.858316673680834)
947 (1257, 15.854299582618129)
948 (5087, 15.835015120603313)
949 (907, 15.797689292293251)
950 (2495, 15.784956882911064)
951 (3381, 15.775396045595087)
952 (5496, 15.761913479521732)
953 (3527, 15.761312376458788)
954 (5665, 15.750904780019425)
955 (4304, 15.744863050433903)
956 (2797, 15.73870245207198)
957 (4580, 15.733393906187164)
958 (3773, 15.729103610518131)
959 (4929, 15.72288967151707)
960 (2230, 15.7019649406421)
961 (3366, 15.701699789391272)
962 (4619, 15.688948559637689)
963 (3876, 15.677555074006134)
964 (5222, 15.676224375859089)
965 (3237, 15.674497639982375)
966 (2465, 15.667785156613796)
967 (4537, 15.64781041910884)
968 (3223, 15.641330600523242)
969 (5444, 15.620280446003674)
970 (4480, 15.602095220542362)
971 (3021, 15.581985649705832)
972 (2357, 15.569228692234539)
973 (5523, 15.567383939295258)
974 (5346, 15.56692613897928)
975 (4741, 15.557969650816279)
976 (3379, 15.542724262165413)
977 (5286, 15.538702780602378)
978 (3128, 15.537141881120411)
979 (2905, 15.500378082522444)
980 (4413, 15.473162034629256)
981 (2220, 15.47296155472022)
982 (5544, 15.470498881929554)
983 (3288, 15.466526296393861)
984 (3290, 15.46361373758285)
985 (5706, 15.422533344362883)
986 (5683, 15.41351914230364)
987 (5243, 15.406725483475206)
988 (4329, 15.4005035128376)
989 (1432, 15.398015817702632)
990 (4600, 15.395365498397442)
991 (5441, 15.394573507114679)
992 (3161, 15.391624130244905)
993 (3532, 15.387554857271995)
994 (5446, 15.381520599167887)
995 (2283, 15.378687670850011)
996 (5417, 15.341077440686991)
997 (4576, 15.32714471226525)
998 (4083, 15.324843112125926)
999 (1991, 15.309122716699338)
1000 (131, 15.288625881921458)
1001 (1011, 15.262392737821656)
1002 (2262, 15.252890923905614)
1003 (296, 15.245726477241382)
1004 (5063, 15.232259204499778)
1005 (4526, 15.228963710346356)
1006 (4461, 15.211716996949564)
1007 (4309, 15.197758039226256)
1008 (648, 15.192324791658343)
1009 (2158, 15.181465861587215)
1010 (1091, 15.178617463758423)
1011 (1168, 15.144649954624946)
1012 (5738, 15.136791171179389)
1013 (5000, 15.119826650205955)
1014 (3559, 15.100377678596759)
1015 (4180, 15.088639099238218)
1016 (3070, 15.062209696792557)
1017 (4693, 15.032208011720098)
1018 (5196, 15.029722813901076)
1019 (5575, 15.023734524671635)
1020 (3826, 14.965260519702548)
1021 (4512, 14.96074075037804)
1022 (5528, 14.960234275576667)
1023 (2928, 14.957118630762489)
1024 (2815, 14.936359187540234)
1025 (1973, 14.932503697805316)
1026 (346, 14.923762295884668)
1027 (5289, 14.917896451073599)
1028 (5518, 14.912033532986415)
1029 (5631, 14.904318353842427)
1030 (1781, 14.901511998830898)
1031 (3354, 14.894592694757691)
1032 (1515, 14.893778870120389)
1033 (5512, 14.880655071780266)
1034 (5537, 14.847360754474133)
1035 (4239, 14.84649013223571)
1036 (2187, 14.843466014875478)
1037 (4996, 14.832481226879029)
1038 (63, 14.827536261267042)
1039 (537, 14.825947857780982)
1040 (5230, 14.824749442490697)
1041 (1967, 14.815416101738279)
1042 (4219, 14.784739249095562)
1043 (1729, 14.762365358238963)
1044 (3931, 14.747522319508064)
1045 (1539, 14.745654019523762)
1046 (5517, 14.720198709396445)
1047 (5676, 14.675386245145576)
1048 (4918, 14.665378547911114)
1049 (1741, 14.653749535355942)
1050 (4169, 14.633949159145402)
1051 (3490, 14.633923453844115)
1052 (1661, 14.620136588116802)
1053 (95, 14.581287367027297)
1054 (4392, 14.562928335120791)
1055 (3211, 14.539361555471395)
1056 (4723, 14.53512939864839)
1057 (3470, 14.529456294460449)
1058 (2993, 14.500026941607786)
1059 (5680, 14.499322252561415)
1060 (4714, 14.460707313434963)
1061 (1739, 14.455460985159744)
1062 (2733, 14.453025980005568)
1063 (5675, 14.451339768472266)
1064 (5110, 14.451241429420971)
1065 (589, 14.415542799397628)
1066 (5688, 14.399305425394509)
1067 (3267, 14.372036799424535)
1068 (1791, 14.361195890744753)
1069 (4400, 14.32059205645646)
1070 (486, 14.268928666419468)
1071 (1546, 14.26595550150105)
1072 (4376, 14.25202463070994)
1073 (3205, 14.234785171141723)
1074 (3692, 14.203152108109922)
1075 (2028, 14.198935674954003)
1076 (2583, 14.174831174156035)
1077 (3289, 14.146461747815106)
1078 (4203, 14.130060732212831)
1079 (1675, 14.100163253817675)
1080 (5784, 14.04056074742531)
1081 (5251, 14.013155122331428)
1082 (612, 14.01088400368095)
1083 (5193, 14.001258463846426)
1084 (5017, 13.966677426617011)
1085 (1334, 13.953128892188136)
1086 (4241, 13.933713279068046)
1087 (1246, 13.925097223396296)
1088 (5461, 13.911185199417073)
1089 (3734, 13.875084148284747)
1090 (3526, 13.874168167452567)
1091 (288, 13.869050436388505)
1092 (4056, 13.850059602762947)
1093 (1512, 13.811153787416362)
1094 (1860, 13.809362619966898)
1095 (1126, 13.804885739408208)
1096 (100, 13.802858432790256)
1097 (378, 13.802730024104591)
1098 (1982, 13.781400442538724)
1099 (5476, 13.779970653075351)
1100 (2915, 13.748286278948655)
1101 (956, 13.73625414937805)
1102 (766, 13.729319147856115)
1103 (4845, 13.724510148577341)
1104 (1302, 13.713444952634708)
1105 (5144, 13.707931760472274)
1106 (5564, 13.695643699734433)
1107 (3693, 13.693161421525463)
1108 (3196, 13.677930663735719)
1109 (4255, 13.67548475539647)
1110 (5623, 13.669496878479896)
1111 (753, 13.667210682001979)
1112 (3597, 13.662951416938878)
1113 (3785, 13.64633787646159)
1114 (2073, 13.641328257172029)
1115 (4041, 13.633424264809683)
1116 (4063, 13.633413910980989)
1117 (5213, 13.609728287582016)
1118 (5685, 13.590941264052148)
1119 (4641, 13.573864505016155)
1120 (1452, 13.564265185382622)
1121 (4617, 13.561759703232232)
1122 (865, 13.56044856176203)
1123 (3868, 13.531670000425242)
1124 (1987, 13.52561463710108)
1125 (2960, 13.512298555554917)
1126 (4212, 13.460135693381012)
1127 (5246, 13.445006340092711)
1128 (5203, 13.44073061889771)
1129 (5556, 13.440384791814045)
1130 (2881, 13.426547001922478)
1131 (5076, 13.425720628501416)
1132 (3828, 13.404809845879507)
1133 (1699, 13.389235479627811)
1134 (201, 13.387843643221553)
1135 (1014, 13.337017344379746)
1136 (441, 13.332838004836415)
1137 (2064, 13.328783505666383)
1138 (5761, 13.324592476898907)
1139 (1332, 13.315493863759452)
1140 (4750, 13.309661125044984)
1141 (2167, 13.298719020847832)
1142 (3700, 13.281903861194248)
1143 (5181, 13.27256063711229)
1144 (4782, 13.261708114728961)
1145 (1942, 13.216161634262818)
1146 (5145, 13.213664147474265)
1147 (980, 13.199918905336794)
1148 (2375, 13.199065567412431)
1149 (4150, 13.193795224636627)
1150 (4908, 13.193563007472459)
1151 (4355, 13.125591095167227)
1152 (1504, 13.122550286008837)
1153 (4653, 13.120934562873485)
1154 (4290, 13.112937983791262)
1155 (2839, 13.106928851340806)
1156 (4491, 13.104758987014554)
1157 (5162, 13.066325265892296)
1158 (4597, 13.065839662511095)
1159 (2408, 13.048126885537204)
1160 (5468, 13.039728312168991)
1161 (4311, 13.035634664837376)
1162 (995, 13.023815908151182)
1163 (3694, 13.013267661397995)
1164 (5681, 13.002785477435985)
1165 (1111, 12.978052971415824)
1166 (5541, 12.974994448258323)
1167 (649, 12.973092748323772)
1168 (1815, 12.963286386418527)
1169 (304, 12.949609414537289)
1170 (4958, 12.922094577087391)
1171 (3681, 12.919569321075128)
1172 (5443, 12.912529605878369)
1173 (2729, 12.90538464677908)
1174 (2576, 12.85940139743148)
1175 (297, 12.85756485998219)
1176 (1075, 12.854005772378812)
1177 (5268, 12.838902874913202)
1178 (4959, 12.838108353790307)
1179 (4159, 12.826074730422967)
1180 (2502, 12.82250077546079)
1181 (2713, 12.80452156484003)
1182 (919, 12.804390155204501)
1183 (5750, 12.798637073520338)
1184 (1758, 12.794886654099287)
1185 (1369, 12.793086436764135)
1186 (4322, 12.79125046422563)
1187 (4925, 12.789850341673333)
1188 (5432, 12.786560739650465)
1189 (5048, 12.728029201400517)
1190 (5128, 12.727837261092795)
1191 (2200, 12.727130032406308)
1192 (3998, 12.722780190315765)
1193 (238, 12.720764983333606)
1194 (1288, 12.719010593402183)
1195 (4182, 12.713443681734166)
1196 (1153, 12.705713461092657)
1197 (2647, 12.683550608032373)
1198 (395, 12.678228611025103)
1199 (5487, 12.659122456459247)
1200 (957, 12.652028191286281)
1201 (3550, 12.63516759423198)
1202 (1912, 12.623450737589785)
1203 (3182, 12.613980027656039)
1204 (1952, 12.598160604549973)
1205 (5647, 12.587100934033437)
1206 (4982, 12.576900182774938)
1207 (3763, 12.568739226221645)
1208 (3926, 12.567643675991377)
1209 (4416, 12.530462983615873)
1210 (3330, 12.525567841630942)
1211 (3511, 12.514051133269344)
1212 (4622, 12.511319321529085)
1213 (2640, 12.498749487287558)
1214 (5056, 12.486498420894346)
1215 (5236, 12.479048049636898)
1216 (2472, 12.475165225589629)
1217 (5348, 12.459934049295082)
1218 (5052, 12.434546619691538)
1219 (4403, 12.412462732870056)
1220 (3562, 12.407001290935455)
1221 (1510, 12.401544274619745)
1222 (3251, 12.386586256565845)
1223 (1251, 12.380766374909594)
1224 (1033, 12.377100438792432)
1225 (5543, 12.356609232590102)
1226 (5779, 12.340428426114721)
1227 (141, 12.320855406353498)
1228 (115, 12.306735714335494)
1229 (4846, 12.294751561810964)
1230 (5113, 12.270823675718589)
1231 (3268, 12.237364775778515)
1232 (1939, 12.223422786206973)
1233 (1277, 12.222416493562314)
1234 (2528, 12.200233105407385)
1235 (4828, 12.190431556507766)
1236 (4252, 12.18946884252399)
1237 (2604, 12.179493406237754)
1238 (5447, 12.163701896214395)
1239 (3142, 12.16065084384762)
1240 (938, 12.154380515283073)
1241 (4637, 12.142446030014174)
1242 (5173, 12.140380679255166)
1243 (509, 12.139709041556182)
1244 (5465, 12.127504265157306)
1245 (4415, 12.12211453230462)
1246 (5032, 12.120377687880868)
1247 (4851, 12.11606654503283)
1248 (3992, 12.113464265886263)
1249 (1540, 12.097707997423173)
1250 (2557, 12.091867709248344)
1251 (1279, 12.08241734845695)
1252 (423, 12.068547137833885)
1253 (2785, 12.057685149396452)
1254 (371, 12.057160851686238)
1255 (5156, 12.053887875172945)
1256 (1305, 12.051849965908993)
1257 (3350, 12.039538457252434)
1258 (4131, 12.037361662594305)
1259 (2603, 12.016633050818243)
1260 (5282, 11.977808854508218)
1261 (5547, 11.963698985690863)
1262 (2630, 11.954913826969443)
1263 (1258, 11.930114395593742)
1264 (4409, 11.922179781495981)
1265 (2923, 11.897209272225012)
1266 (5577, 11.890417431400657)
1267 (3328, 11.881849690867725)
1268 (4146, 11.878505478268952)
1269 (3637, 11.852778909535465)
1270 (3011, 11.846890382740552)
1271 (159, 11.841608618397228)
1272 (3472, 11.838148876429935)
1273 (1294, 11.823836004794908)
1274 (4804, 11.815756945862189)
1275 (247, 11.785195097880356)
1276 (1576, 11.76576922213483)
1277 (4809, 11.764667044934688)
1278 (5568, 11.735181863435693)
1279 (2903, 11.734163038580947)
1280 (3179, 11.731485694987708)
1281 (5085, 11.728584133731275)
1282 (2246, 11.71512725444695)
1283 (2704, 11.698272652359053)
1284 (2910, 11.696683668980628)
1285 (2811, 11.686089945966788)
1286 (3206, 11.680022255924335)
1287 (3227, 11.672556437514757)
1288 (3266, 11.650635215594717)
1289 (1311, 11.636387118331578)
1290 (5127, 11.633873076410721)
1291 (1359, 11.625566691915585)
1292 (4669, 11.603316369936621)
1293 (3257, 11.586976807789421)
1294 (4107, 11.583451890351045)
1295 (4114, 11.562277909867174)
1296 (2702, 11.550111043894775)
1297 (190, 11.544743928558388)
1298 (1760, 11.544285106766665)
1299 (2641, 11.523559408562155)
1300 (1872, 11.501529194256364)
1301 (3373, 11.445330154797981)
1302 (1413, 11.436231717850374)
1303 (4331, 11.426154930704911)
1304 (1891, 11.394997660920575)
1305 (3936, 11.363011232967647)
1306 (4610, 11.353660696226479)
1307 (87, 11.348999136685622)
1308 (470, 11.336376497914863)
1309 (4715, 11.334760615222255)
1310 (3397, 11.329278573364975)
1311 (3835, 11.316624919428435)
1312 (5602, 11.303501503010063)
1313 (4584, 11.284189005981718)
1314 (4474, 11.284171104235966)
1315 (2500, 11.277702039867217)
1316 (3752, 11.246991323303842)
1317 (5567, 11.244057457160128)
1318 (3487, 11.237772073817627)
1319 (2499, 11.23422327918318)
1320 (4640, 11.222988987264001)
1321 (3585, 11.214950757225981)
1322 (996, 11.213099365575548)
1323 (1610, 11.192271924322039)
1324 (3361, 11.1893623531614)
1325 (3258, 11.178579563505904)
1326 (4939, 11.16282104525699)
1327 (4496, 11.158874404892568)
1328 (4973, 11.138031962877657)
1329 (4957, 11.135446348923313)
1330 (4734, 11.116988210369376)
1331 (3008, 11.116752257922117)
1332 (4802, 11.106183360390128)
1333 (5536, 11.103280357473544)
1334 (128, 11.089180782227491)
1335 (1896, 11.081408779561627)
1336 (250, 11.078794351570499)
1337 (894, 11.074838998891993)
1338 (4534, 11.071368681143028)
1339 (1547, 11.048406399886092)
1340 (2185, 11.045178148525981)
1341 (3481, 11.045049879827104)
1342 (1474, 11.044133332636875)
1343 (2059, 11.024366049746071)
1344 (801, 11.013105211856367)
1345 (358, 11.008603233839034)
1346 (5490, 10.992929994646923)
1347 (120, 10.992453693512706)
1348 (4823, 10.947359595022476)
1349 (3754, 10.94250239645657)
1350 (847, 10.90663795045386)
1351 (1764, 10.903447685100092)
1352 (2080, 10.896404848882943)
1353 (5089, 10.889709865983976)
1354 (5734, 10.878229725224525)
1355 (2078, 10.872974992774697)
1356 (3387, 10.867263881490604)
1357 (4575, 10.832238473440935)
1358 (3737, 10.826096885670264)
1359 (1289, 10.805099736478933)
1360 (1323, 10.750783183986783)
1361 (3534, 10.736777460892743)
1362 (2601, 10.723499806499085)
1363 (3946, 10.697920495734863)
1364 (503, 10.681213563746553)
1365 (3538, 10.675767080130997)
1366 (3755, 10.629115030603234)
1367 (5640, 10.606095730015245)
1368 (2611, 10.603069020624066)
1369 (5202, 10.579256095130384)
1370 (4110, 10.560754616507515)
1371 (4824, 10.557616345462161)
1372 (5664, 10.523768460441961)
1373 (4187, 10.515654270131346)
1374 (4043, 10.50889632506262)
1375 (5705, 10.502549775049738)
1376 (3189, 10.487889547370861)
1377 (5495, 10.480208127020635)
1378 (5593, 10.478353452572376)
1379 (4395, 10.459661205801744)
1380 (3502, 10.437857713842137)
1381 (4941, 10.427753236029265)
1382 (3458, 10.424322248771539)
1383 (3575, 10.388519411872714)
1384 (3609, 10.355365455494585)
1385 (2530, 10.341981982520666)
1386 (3985, 10.340024819116499)
1387 (1701, 10.306298256979773)
1388 (5462, 10.294879376279606)
1389 (5190, 10.292110090108798)
1390 (3555, 10.2903618090847)
1391 (4533, 10.256882507858521)
1392 (708, 10.238174799428345)
1393 (3061, 10.237226889131529)
1394 (180, 10.230478868437963)
1395 (3507, 10.214118344192876)
1396 (2198, 10.17580603588091)
1397 (2950, 10.170910233882028)
1398 (900, 10.169088112301377)
1399 (3537, 10.147304822065408)
1400 (3216, 10.141783161528267)
1401 (4807, 10.13916177799782)
1402 (3929, 10.11608664506549)
1403 (173, 10.098787040640364)
1404 (369, 10.084882910693322)
1405 (2620, 10.078380603465495)
1406 (313, 10.077075593640346)
1407 (1076, 10.067530964228544)
1408 (5298, 10.047826357829113)
1409 (3316, 10.041239580836455)
1410 (1672, 10.028245779379317)
1411 (3335, 10.014622871063569)
1412 (5314, 10.010155332615319)
1413 (94, 9.9716362293170082)
1414 (4266, 9.9204225486219588)
1415 (2773, 9.9146957304329923)
1416 (4230, 9.8884977288492273)
1417 (5628, 9.8865584519360965)
1418 (4718, 9.8637744747138125)
1419 (5276, 9.8542649768472632)
1420 (4635, 9.7942747412050846)
1421 (3229, 9.7688388668465791)
1422 (5530, 9.7504578190519613)
1423 (5226, 9.7432929065130498)
1424 (4272, 9.6939594637518045)
1425 (4209, 9.6937431410971175)
1426 (2789, 9.6818069815932439)
1427 (1541, 9.628623781625091)
1428 (4246, 9.6090884664784308)
1429 (5163, 9.5495145956336671)
1430 (3576, 9.5404030620617615)
1431 (2221, 9.5402657787980569)
1432 (5448, 9.5369608589893957)
1433 (5299, 9.5240919594083682)
1434 (1684, 9.5082990367539963)
1435 (3796, 9.4923852552409365)
1436 (5086, 9.4922102713988643)
1437 (4268, 9.4803334677267834)
1438 (5090, 9.4148131003099174)
1439 (3278, 9.4134919669496142)
1440 (5409, 9.4077140521528282)
1441 (5531, 9.4036873934747351)
1442 (5596, 9.402229635957795)
1443 (3233, 9.3816997218050666)
1444 (4555, 9.3717918490818963)
1445 (4064, 9.3659064771314071)
1446 (3885, 9.31898193391633)
1447 (3783, 9.3097659915186366)
1448 (5263, 9.3058229805620574)
1449 (2353, 9.2680399417399943)
1450 (2190, 9.2443729627612274)
1451 (5539, 9.235747245447735)
1452 (910, 9.2248701590040767)
1453 (4390, 9.22434584284888)
1454 (4010, 9.1861620287151649)
1455 (935, 9.1586239131052309)
1456 (2676, 9.1582701731073328)
1457 (1810, 9.1426759592612683)
1458 (5720, 9.1342966945529209)
1459 (5581, 9.1215155219381892)
1460 (4508, 9.1004201711130008)
1461 (606, 9.0935791143645517)
1462 (5227, 9.0793597593643121)
1463 (4026, 9.0629992624170264)
1464 (5580, 9.0257453848653864)
1465 (5740, 9.021047873140672)
1466 (3240, 8.9998365831960232)
1467 (5285, 8.9977323073189108)
1468 (1828, 8.9946138110180271)
1469 (4827, 8.9940534512586883)
1470 (2665, 8.9912889751162144)
1471 (2848, 8.986191043713438)
1472 (3979, 8.9725561216239882)
1473 (4051, 8.9658826370734985)
1474 (692, 8.9627699745538418)
1475 (4998, 8.9602807232961617)
1476 (5400, 8.9485042060374838)
1477 (5255, 8.9445112690215574)
1478 (388, 8.9403729670259828)
1479 (4077, 8.9320055105536209)
1480 (3673, 8.9263432456462528)
1481 (3542, 8.9261639347021173)
1482 (4054, 8.8977785617838698)
1483 (181, 8.8952034263230679)
1484 (1795, 8.8912471817930392)
1485 (4572, 8.8528803504931375)
1486 (1908, 8.823252288045575)
1487 (4791, 8.805005301849425)
1488 (4682, 8.7845930784384088)
1489 (5404, 8.7797878848542226)
1490 (3197, 8.7592781821525918)
1491 (2145, 8.7579709187924237)
1492 (4206, 8.7422701554569375)
1493 (587, 8.7341547779292465)
1494 (3067, 8.7308645152349982)
1495 (69, 8.7227738577277307)
1496 (1633, 8.7101297108282836)
1497 (3535, 8.7088297374793981)
1498 (539, 8.705811828620309)
1499 (578, 8.7012048520655902)
1500 (3533, 8.6955033634735805)
1501 (4098, 8.6864848950993565)
1502 (3865, 8.6733924979814212)
1503 (5739, 8.6611075277038001)
1504 (2980, 8.6604884453921045)
1505 (5652, 8.635145906260572)
1506 (2144, 8.6137068175510105)
1507 (5103, 8.6084100910396621)
1508 (3679, 8.5787183811863095)
1509 (4769, 8.5699440812379262)
1510 (4775, 8.5458069835739092)
1511 (5752, 8.5313790824374252)
1512 (5573, 8.5249166300328181)
1513 (3847, 8.5120449177487352)
1514 (5023, 8.5117754814366258)
1515 (2171, 8.499686162236225)
1516 (2916, 8.4868317452692477)
1517 (2906, 8.4826846227418109)
1518 (3636, 8.4793110750883347)
1519 (4805, 8.4713803820149494)
1520 (5147, 8.4704365124719203)
1521 (3991, 8.4580077313437787)
1522 (4654, 8.4450051301722091)
1523 (3988, 8.4387341043795132)
1524 (5642, 8.4207825941600536)
1525 (3751, 8.4143519341391375)
1526 (2216, 8.4126071757659346)
1527 (4712, 8.4066945449141279)
1528 (1553, 8.4006013721415247)
1529 (5040, 8.3952031544725916)
1530 (3220, 8.3787376857731388)
1531 (4913, 8.3753031853665352)
1532 (3707, 8.3661972582364079)
1533 (4598, 8.351082455319796)
1534 (291, 8.3496694222107575)
1535 (5026, 8.3491590691431465)
1536 (3075, 8.339723570142576)
1537 (5248, 8.3360346410498884)
1538 (5570, 8.3305898547054049)
1539 (4334, 8.3283657834837062)
1540 (2673, 8.3250587532115805)
1541 (937, 8.3053473786340284)
1542 (5650, 8.2932718823749951)
1543 (5168, 8.286767279745261)
1544 (5333, 8.2802314195263769)
1545 (4931, 8.2775489304272192)
1546 (467, 8.2389626403221463)
1547 (5407, 8.2295961251314296)
1548 (1761, 8.2024940139088773)
1549 (4969, 8.1846088742344723)
1550 (244, 8.1755646044648813)
1551 (79, 8.1691270018184738)
1552 (5096, 8.1681622638310483)
1553 (687, 8.1598346957605958)
1554 (1721, 8.1569284903388954)
1555 (4732, 8.083891348381238)
1556 (2656, 8.0775128246773722)
1557 (5424, 8.0670377936296234)
1558 (97, 8.0582289952343249)
1559 (1155, 8.0569586374356721)
1560 (1370, 8.0556447290188835)
1561 (5010, 8.0537519796203956)
1562 (102, 8.049646510688369)
1563 (5317, 8.0407534498940816)
1564 (3045, 8.0259658929131383)
1565 (4211, 8.0224499206941005)
1566 (4030, 8.0016938904540176)
1567 (2022, 7.9977651923506361)
1568 (5331, 7.9798294853098346)
1569 (2411, 7.9729226901221892)
1570 (2660, 7.9617234823318634)
1571 (2846, 7.9517385969372105)
1572 (4161, 7.9477593864442131)
1573 (5259, 7.9383065719428378)
1574 (3053, 7.9219054469697436)
1575 (1940, 7.8890504793990957)
1576 (3324, 7.8888679671022546)
1577 (5658, 7.8474180534967051)
1578 (815, 7.8372376839995734)
1579 (590, 7.837118315118615)
1580 (2805, 7.832773162044588)
1581 (4232, 7.8265081490869424)
1582 (3013, 7.8250934086656727)
1583 (1719, 7.7973653690479043)
1584 (4213, 7.7757418134905851)
1585 (4792, 7.7557352824558397)
1586 (1880, 7.7509165792774084)
1587 (5179, 7.7504828927246283)
1588 (3710, 7.7490842788275627)
1589 (4191, 7.6946909341481842)
1590 (4685, 7.6742019659273808)
1591 (4192, 7.6651946894442613)
1592 (240, 7.6632468058032046)
1593 (2977, 7.6489390851584993)
1594 (5100, 7.6439258957325311)
1595 (1228, 7.6248210135568808)
1596 (2560, 7.6057483406878239)
1597 (3331, 7.597820706629439)
1598 (2992, 7.5843263202367881)
1599 (4125, 7.5771798305044777)
1600 (3499, 7.5758028800624579)
1601 (548, 7.5703420229093847)
1602 (5450, 7.5398415004248482)
1603 (357, 7.4844086982880951)
1604 (4332, 7.4767040228518553)
1605 (4091, 7.429739662364387)
1606 (4286, 7.4099037524464881)
1607 (341, 7.3837719587806561)
1608 (2833, 7.3687379827514903)
1609 (2874, 7.3567801958710808)
1610 (5661, 7.3539333364811839)
1611 (2929, 7.3251422375652959)
1612 (4079, 7.3248234724843044)
1613 (3282, 7.3208370180205984)
1614 (5635, 7.3003343327161714)
1615 (3633, 7.2979024443276206)
1616 (4729, 7.2781637222804791)
1617 (457, 7.2761037095262591)
1618 (4013, 7.2722979427596046)
1619 (302, 7.2656881732126504)
1620 (3881, 7.26343471622571)
1621 (5682, 7.2294608514827976)
1622 (4412, 7.1917984704791262)
1623 (4348, 7.1689618913745115)
1624 (435, 7.1672600169842466)
1625 (5050, 7.1539912939400914)
1626 (4042, 7.1270501838655953)
1627 (2544, 7.1112538978168311)
1628 (3120, 7.1050447640091745)
1629 (1646, 7.0840326230964372)
1630 (3270, 7.0838484455808288)
1631 (5586, 7.0817424350872251)
1632 (4615, 7.066590315148507)
1633 (2479, 7.0534646282325308)
1634 (1350, 7.0033695804105065)
1635 (5719, 7.0009573189773988)
1636 (5746, 7.000787434906881)
1637 (4336, 6.9987353893028219)
1638 (4683, 6.9969478756027801)
1639 (2002, 6.9166402280729233)
1640 (1307, 6.8968381437287398)
1641 (1922, 6.8961419426192592)
1642 (4173, 6.8938625699296825)
1643 (3840, 6.8809865902891261)
1644 (5180, 6.8761008759983007)
1645 (4557, 6.8573099852984196)
1646 (4034, 6.8529052481442365)
1647 (2359, 6.8320708385221529)
1648 (4737, 6.7756669097484918)
1649 (3303, 6.7710881550905473)
1650 (401, 6.756403748447636)
1651 (4176, 6.7015550135066881)
1652 (5002, 6.6819511957546514)
1653 (4594, 6.671596085236791)
1654 (3789, 6.6665580467366645)
1655 (4529, 6.6484992927930637)
1656 (1095, 6.6431330225195531)
1657 (3180, 6.6274698327493802)
1658 (5215, 6.6066961849948349)
1659 (2969, 6.6066138137361889)
1660 (640, 6.60096378657577)
1661 (5182, 6.5966075388651673)
1662 (5201, 6.5935517123836682)
1663 (5051, 6.5547845013914143)
1664 (2370, 6.5482018857289397)
1665 (4097, 6.5431343822072394)
1666 (2988, 6.5244627043322252)
1667 (5141, 6.5216714096980892)
1668 (2856, 6.4813799389731193)
1669 (1188, 6.4588702301801648)
1670 (3337, 6.4550938952585373)
1671 (4495, 6.4457678930151348)
1672 (5731, 6.4104775463938504)
1673 (3147, 6.3969582952545583)
1674 (4288, 6.3708899531039815)
1675 (5513, 6.3647846719675423)
1676 (2817, 6.363458173110959)
1677 (144, 6.357146424840872)
1678 (5721, 6.353894855807094)
1679 (2832, 6.3496689634175496)
1680 (3024, 6.3477791332905982)
1681 (4582, 6.334544425459173)
1682 (3037, 6.3326610496927884)
1683 (337, 6.32593010140467)
1684 (604, 6.3252522694191766)
1685 (4829, 6.3196448167319303)
1686 (3221, 6.3169022810573381)
1687 (2367, 6.3103273922692065)
1688 (3175, 6.2698994677602906)
1689 (4986, 6.2563700076998483)
1690 (5084, 6.25074136718706)
1691 (3634, 6.2463331806330959)
1692 (4373, 6.2419603388348079)
1693 (3723, 6.2396685558219644)
1694 (4314, 6.238159614192142)
1695 (4855, 6.2358359080838248)
1696 (335, 6.2316439323947188)
1697 (3709, 6.2286680146995126)
1698 (2890, 6.2143166143214739)
1699 (4847, 6.199049541989603)
1700 (2897, 6.1937304692045219)
1701 (3408, 6.1893132162521587)
1702 (4935, 6.1710178029086489)
1703 (3872, 6.1697576853997909)
1704 (1740, 6.1550227149874059)
1705 (4731, 6.1513056974996774)
1706 (3659, 6.1423648860098092)
1707 (1243, 6.1420369849159702)
1708 (5715, 6.1400191774708155)
1709 (2439, 6.1368454358077829)
1710 (4356, 6.1014287031394856)
1711 (2095, 6.0969698851294005)
1712 (5660, 6.0936381345419077)
1713 (4337, 6.0816940614267132)
1714 (5036, 6.0477276279620984)
1715 (4849, 6.0332857480005631)
1716 (5241, 6.0007661448549543)
1717 (5014, 5.9982991815629623)
1718 (68, 5.9966498577731429)
1719 (5198, 5.9518138035725734)
1720 (3548, 5.9322218423659603)
1721 (1293, 5.9308293883469236)
1722 (117, 5.9291340739968144)
1723 (4151, 5.9130199056867525)
1724 (2148, 5.9062700032396567)
1725 (3925, 5.900259738027728)
1726 (4562, 5.8673592955902958)
1727 (5785, 5.8290473726473131)
1728 (1086, 5.8235309370155681)
1729 (5060, 5.8065994709451907)
1730 (1710, 5.7992745220750397)
1731 (1230, 5.7703770339451275)
1732 (4656, 5.7529245025618403)
1733 (1148, 5.7429588768898787)
1734 (3654, 5.7177054734001471)
1735 (4375, 5.7080617581786992)
1736 (4235, 5.6865215925276624)
1737 (5540, 5.67290785835928)
1738 (4783, 5.6422661415966049)
1739 (5312, 5.6319524548928772)
1740 (1528, 5.6071827590495582)
1741 (4207, 5.5970158479708871)
1742 (4175, 5.5778283672763251)
1743 (4310, 5.5745388468290553)
1744 (3740, 5.544014920597041)
1745 (360, 5.5343280928965459)
1746 (1444, 5.5197070434905724)
1747 (108, 5.5102448163084476)
1748 (4664, 5.501469567834274)
1749 (5401, 5.4792985813645183)
1750 (3187, 5.4397164232120705)
1751 (3274, 5.4262440479439427)
1752 (422, 5.4185462830814854)
1753 (3167, 5.4105433219242087)
1754 (4553, 5.4049763863912297)
1755 (930, 5.4006273687083199)
1756 (709, 5.3894531980154259)
1757 (167, 5.3829379438531468)
1758 (4951, 5.3734497787398681)
1759 (4970, 5.3621955905768104)
1760 (3961, 5.3515863594768831)
1761 (3586, 5.3506517728768213)
1762 (3473, 5.3360336629920022)
1763 (968, 5.3347822315912348)
1764 (5012, 5.3265292136039948)
1765 (8, 5.311442689562142)
1766 (5704, 5.2808603071147431)
1767 (2577, 5.2777587746337735)
1768 (877, 5.2585519112029964)
1769 (4260, 5.2416998664638852)
1770 (1989, 5.2298684685555514)
1771 (2579, 5.224462111212965)
1772 (848, 5.2141149205755477)
1773 (841, 5.210463264960957)
1774 (4475, 5.206711267217214)
1775 (4262, 5.1820754838850069)
1776 (4801, 5.1488209456378291)
1777 (4662, 5.1258701625327454)
1778 (4788, 5.1221119584356378)
1779 (333, 5.1179635462727191)
1780 (1247, 5.0822905061873485)
1781 (4684, 5.0638269181331266)
1782 (4902, 5.0420791911275931)
1783 (5619, 5.0383925755998682)
1784 (997, 5.0158631660671009)
1785 (4406, 5.003540709339374)
1786 (5256, 4.9849301730876192)
1787 (4354, 4.9743836756952513)
1788 (5552, 4.9556689527649667)
1789 (5231, 4.9491621567029558)
1790 (2840, 4.9224338799434317)
1791 (281, 4.9058204455527621)
1792 (5094, 4.9019514519391203)
1793 (21, 4.8982818183125119)
1794 (3138, 4.8407583577146474)
1795 (5072, 4.8304934116492992)
1796 (4603, 4.8231640753087097)
1797 (5235, 4.7832849050961368)
1798 (4926, 4.7782763488840008)
1799 (830, 4.7681465927246851)
1800 (3461, 4.7611275038664651)
1801 (4542, 4.7513050725804051)
1802 (4721, 4.7443439919358079)
1803 (2152, 4.6877105755554833)
1804 (4571, 4.677383871814043)
1805 (5696, 4.6740825769663594)
1806 (451, 4.6416556245945344)
1807 (4024, 4.6216384804092216)
1808 (5695, 4.619314593057176)
1809 (5565, 4.6122209915649046)
1810 (5119, 4.6009075530401029)
1811 (5599, 4.583150801987137)
1812 (5507, 4.5729591149605904)
1813 (5459, 4.541810839635728)
1814 (1259, 4.5314680701605017)
1815 (5690, 4.5044162743410476)
1816 (1422, 4.4920241852217329)
1817 (253, 4.4505027542034572)
1818 (3344, 4.4259194499292871)
1819 (81, 4.4209866337051658)
1820 (5655, 4.4172185010213649)
1821 (5274, 4.4057461331566428)
1822 (2429, 4.3955240992215678)
1823 (1495, 4.3833733947811391)
1824 (2538, 4.3351333963167216)
1825 (4104, 4.3306281172318073)
1826 (4120, 4.319311053549546)
1827 (3632, 4.3033551150268119)
1828 (4704, 4.2872652603265919)
1829 (3042, 4.2813555091932685)
1830 (4984, 4.2752428604789703)
1831 (4680, 4.2634831111303821)
1832 (5774, 4.2574661380413694)
1833 (5605, 4.2477925912215566)
1834 (3359, 4.237853797634541)
1835 (5425, 4.2280746460884755)
1836 (5453, 4.2161463245678386)
1837 (4008, 4.2077075075858854)
1838 (5694, 4.194941273861291)
1839 (5469, 4.1886449224715596)
1840 (1600, 4.1879537141043306)
1841 (585, 4.1861948591840115)
1842 (5067, 4.1429590202727358)
1843 (4452, 4.1125741031099619)
1844 (3323, 4.1011105614983556)
1845 (3048, 4.1009069558993394)
1846 (3054, 4.0990005563139569)
1847 (4590, 4.0600588835154836)
1848 (3886, 4.0588527085732231)
1849 (4243, 4.0149746078445316)
1850 (3062, 3.9717848854800604)
1851 (3661, 3.9452144259580169)
1852 (4263, 3.9402240155780355)
1853 (4773, 3.9359734805510995)
1854 (5521, 3.9347914626073672)
1855 (3485, 3.923953141829629)
1856 (5716, 3.9074583348503311)
1857 (772, 3.8816506692247112)
1858 (746, 3.8714988048276808)
1859 (4454, 3.8552342953650562)
1860 (3340, 3.853186260650737)
1861 (3845, 3.8251440011559361)
1862 (5607, 3.7964315194901492)
1863 (4018, 3.7916357444153523)
1864 (4817, 3.7582764303694716)
1865 (3596, 3.7302172074644586)
1866 (5727, 3.7242141000673734)
1867 (4777, 3.7214326236867801)
1868 (5574, 3.7144721073330835)
1869 (5612, 3.697747104259967)
1870 (1743, 3.677152927122636)
1871 (5422, 3.5615577092048305)
1872 (5436, 3.5281599971456687)
1873 (4327, 3.5189827110870873)
1874 (3035, 3.5014655126433314)
1875 (5344, 3.4940028789562829)
1876 (2709, 3.4927437741695582)
1877 (4467, 3.4577594860774252)
1878 (3136, 3.4217556761503465)
1879 (1997, 3.4093698146936289)
1880 (4954, 3.3610993784038357)
1881 (5107, 3.3091847647032919)
1882 (4825, 3.3035995938742726)
1883 (4234, 3.2546656991739376)
1884 (5709, 3.2372389381887201)
1885 (1573, 3.2278211585066701)
1886 (4371, 3.2156150880483416)
1887 (4408, 3.2097694148798954)
1888 (2107, 3.2059665980783976)
1889 (5123, 3.1638825430477722)
1890 (2942, 3.1376734506719277)
1891 (5702, 3.0826224460911158)
1892 (5557, 3.0782488703184092)
1893 (3641, 3.0539430719745049)
1894 (375, 3.0447455028039685)
1895 (228, 3.0248987126785849)
1896 (2895, 3.0201637965632813)
1897 (3219, 2.9908778463455934)
1898 (4579, 2.9684316943848907)
1899 (3036, 2.9612691747071236)
1900 (4166, 2.9519303789271882)
1901 (2761, 2.9480273338101632)
1902 (4482, 2.9392244580621814)
1903 (3510, 2.9383022378535646)
1904 (1599, 2.9229477473576164)
1905 (5238, 2.9032900501673931)
1906 (5510, 2.9017346247120299)
1907 (453, 2.8936774233301268)
1908 (3414, 2.8725325779196353)
1909 (5497, 2.8689213120959494)
1910 (1306, 2.8609418189857192)
1911 (3536, 2.809543421079149)
1912 (4745, 2.7648953954673474)
1913 (2404, 2.7400860966631884)
1914 (1626, 2.7350489113513881)
1915 (5454, 2.726327943186738)
1916 (4156, 2.7252904129182349)
1917 (4657, 2.7241621721413471)
1918 (3530, 2.7226127210775388)
1919 (5662, 2.6952116893627291)
1920 (5025, 2.6828801168430694)
1921 (599, 2.6796512550051825)
1922 (3059, 2.6675529539365068)
1923 (945, 2.6522391381731527)
1924 (3684, 2.5523943005276162)
1925 (5008, 2.5459715726480763)
1926 (2847, 2.5392353858783903)
1927 (1481, 2.5266522809240675)
1928 (4012, 2.453443680536088)
1929 (5019, 2.4399550296330146)
1930 (468, 2.4249445253495452)
1931 (4316, 2.4154190312528234)
1932 (832, 2.3896951461772367)
1933 (4739, 2.3758433078076675)
1934 (271, 2.3528768331460421)
1935 (4053, 2.3459907616074194)
1936 (4335, 2.3193747406024383)
1937 (4378, 2.2885253893875186)
1938 (1716, 2.2460283070541793)
1939 (2532, 2.2245476691802972)
1940 (177, 2.2197710483159767)
1941 (4649, 2.2164849427276887)
1942 (1786, 2.1785390447517301)
1943 (5329, 2.1784256537000424)
1944 (2106, 2.1731576587137034)
1945 (1899, 2.155975627210895)
1946 (4291, 2.1382759946007894)
1947 (3297, 2.1373810849653285)
1948 (514, 2.1104002392788916)
1949 (4776, 2.10752549999936)
1950 (3160, 2.0919319806069883)
1951 (4035, 2.0581370727974173)
1952 (5143, 2.0570142016493689)
1953 (2543, 2.0549796683460921)
1954 (5553, 2.0312558322054972)
1955 (3029, 2.0012105678446233)
1956 (888, 1.9733412866993714)
1957 (4818, 1.960540935785164)
1958 (3997, 1.9046296450651501)
1959 (4296, 1.875614152445225)
1960 (886, 1.8366737309182568)
1961 (3617, 1.7869275164567551)
1962 (3712, 1.786743748548357)
1963 (5003, 1.7821350761119084)
1964 (136, 1.7806593125081491)
1965 (2001, 1.7353097101149333)
1966 (4265, 1.7119372233648948)
1967 (4506, 1.6398028727312761)
1968 (5759, 1.6389429309843759)
1969 (499, 1.6296072797872518)
1970 (2634, 1.6184201644462242)
1971 (5273, 1.615391128682639)
1972 (5240, 1.5866046576372799)
1973 (3932, 1.5520322073853277)
1974 (5486, 1.550140000933057)
1975 (4746, 1.530019884626147)
1976 (3676, 1.5275755900622188)
1977 (5641, 1.5250501189603032)
1978 (714, 1.5161596439605072)
1979 (5560, 1.5047139451403773)
1980 (5464, 1.4714626645031283)
1981 (5207, 1.4552401302084477)
1982 (2586, 1.4389365583288569)
1983 (4901, 1.4331484517071462)
1984 (4854, 1.4266156938314181)
1985 (5135, 1.4144366040051661)
1986 (5250, 1.4138439895597152)
1987 (3006, 1.4125927448594862)
1988 (4768, 1.3628137921052716)
1989 (5421, 1.3297700015758236)
1990 (1994, 1.3283402531410557)
1991 (4065, 1.3129637218326178)
1992 (5080, 1.3037091762849613)
1993 (2830, 1.2893982597573719)
1994 (4516, 1.2278007778775937)
1995 (5639, 1.1859457940752018)
1996 (4470, 1.1668213179193436)
1997 (5670, 1.1023982856714671)
1998 (1965, 1.090569897853273)
1999 (2048, 1.0647725219671678)
2000 (224, 1.0592017519849648)
2001 (2491, 1.0327813882156693)
2002 (5622, 1.0053550304949574)
2003 (5092, 0.9761417379400168)
2004 (5583, 0.96865016883601551)
2005 (4614, 0.94890534621633971)
2006 (4696, 0.93133356181886273)
2007 (1571, 0.92306225375204387)
2008 (3345, 0.92272367815652412)
2009 (421, 0.88358742145534686)
2010 (5648, 0.87451545885190352)
2011 (4757, 0.80282520580686545)
2012 (5561, 0.77400478010715901)
2013 (2360, 0.75508258417021423)
2014 (5467, 0.75352458117194587)
2015 (4090, 0.74472559875291322)
2016 (2473, 0.73532766103243552)
2017 (4244, 0.73397829641860635)
2018 (4353, 0.63560642684621382)
2019 (4978, 0.60542778478719317)
2020 (3781, 0.59504797747290039)
2021 (4841, 0.59004411619813801)
2022 (3255, 0.5810465132294006)
2023 (5310, 0.57673949159014182)
2024 (4247, 0.56967675484618518)
2025 (5136, 0.52102984923353091)
2026 (2346, 0.49397001641159521)
2027 (3370, 0.46951477407945041)
2028 (5666, 0.44390572816053364)
2029 (4, 0.4306228979039588)
2030 (3302, 0.40207695189753068)
2031 (4748, 0.40054787318280721)
2032 (1438, 0.35325263374189436)
2033 (2393, 0.35213063533712891)
2034 (2029, 0.34372910656585376)
2035 (2399, 0.33640170027807154)
2036 (3131, 0.29971469544445972)
2037 (322, 0.29050518531574365)
2038 (4643, 0.2426223138440845)
2039 (5598, 0.23411363482723413)
2040 (5519, 0.2039588059208457)
2041 (5633, 0.17749790639714469)
2042 (3026, 0.17714070309077301)
2043 (5252, 0.15788122958137274)
2044 (4692, 0.12808701762749658)
2045 (1984, 0.10877219279701666)
2046 (2051, 0.106900624636147)
2047 (4455, 0.051754769014466184)
2048 (5183, 0.021657653092045592)
2049 (5438, 0.021620813775720116)
2050 (4240, 0.0047725057973673213)
2051 (5756, -0.025725686764515032)
2052 (5491, -0.072956568325318827)
2053 (2224, -0.092716384413370712)
2054 (5095, -0.13291734696126523)
2055 (5551, -0.18060974026021759)
2056 (4795, -0.18869716011348245)
2057 (4671, -0.20309189205791689)
2058 (5247, -0.261153708030605)
2059 (1708, -0.31007548659930684)
2060 (1941, -0.33289780913682776)
2061 (114, -0.33363983691359994)
2062 (3049, -0.34906798944419032)
2063 (5082, -0.34995765495612874)
2064 (4943, -0.38176302639685034)
2065 (4383, -0.39599653182013633)
2066 (4767, -0.40484375642916787)
2067 (3705, -0.41905934952329016)
2068 (619, -0.42097792414944402)
2069 (5458, -0.49850062275081131)
2070 (555, -0.52161407588653574)
2071 (5430, -0.53418942100861266)
2072 (4816, -0.5600048985580417)
2073 (2340, -0.58763011185029335)
2074 (4076, -0.65196111468747464)
2075 (3667, -0.66325879978475655)
2076 (5600, -0.6939566186094237)
2077 (3405, -0.69641124165258717)
2078 (5175, -0.7023231438383899)
2079 (2554, -0.71773346944042826)
2080 (4639, -0.88952670556392222)
2081 (5747, -0.89500791634394306)
2082 (2177, -0.97872065290881949)
2083 (5327, -1.0722682284577238)
2084 (3701, -1.1015037854017034)
2085 (3215, -1.137839151782627)
2086 (1954, -1.2110150334145859)
2087 (867, -1.2520942589985655)
2088 (5295, -1.2571771062365311)
2089 (1769, -1.2889849716059696)
2090 (2600, -1.2980531094685652)
2091 (2402, -1.3271804306614077)
2092 (702, -1.3319361071804292)
2093 (3184, -1.351575711435886)
2094 (4538, -1.4163971540511102)
2095 (4050, -1.4636790030704232)
2096 (2918, -1.4902582157364981)
2097 (3581, -1.5151767870730528)
2098 (5439, -1.5853247139904867)
2099 (5714, -1.5867780832793148)
2100 (5532, -1.6244607961837225)
2101 (840, -1.6988992355292591)
2102 (668, -1.7469720080000755)
2103 (5134, -1.751444574360183)
2104 (4507, -1.7589774507875013)
2105 (4111, -1.8220414181634954)
2106 (5004, -2.0065712363337953)
2107 (4015, -2.0362138680672066)
2108 (1566, -2.0695864220133715)
2109 (3482, -2.0981818433851744)
2110 (4466, -2.1127643414188801)
2111 (611, -2.2163320984137331)
2112 (3780, -2.226349661083546)
2113 (4019, -2.2273438443227018)
2114 (5205, -2.230134885626827)
2115 (647, -2.2400022134171582)
2116 (4730, -2.2602480183701097)
2117 (3655, -2.3305694608098957)
2118 (771, -2.3430935059703026)
2119 (5142, -2.3566268850034433)
2120 (2994, -2.3774185623726414)
2121 (751, -2.4273124414396365)
2122 (4574, -2.4918028221418438)
2123 (5150, -2.561177364672492)
2124 (5733, -2.6282695385970252)
2125 (4248, -2.6380690999748673)
2126 (2721, -2.6542972068470325)
2127 (4904, -2.6548016749417389)
2128 (2518, -2.6579648694692923)
2129 (3355, -2.7528315293680241)
2130 (5713, -2.766682055563467)
2131 (5347, -2.7714880064449332)
2132 (3212, -2.8792565205184353)
2133 (4517, -2.9088237460578235)
2134 (2517, -2.9257945394259051)
2135 (1108, -2.9313663581768266)
2136 (2485, -2.9349755872535885)
2137 (5412, -2.9815031126056084)
2138 (3591, -2.9972292804763634)
2139 (1847, -3.0000025909355545)
2140 (5161, -3.0158385352183785)
2141 (4842, -3.059026396632091)
2142 (4965, -3.112330220347594)
2143 (2093, -3.1399361151034957)
2144 (1450, -3.1700574134973847)
2145 (932, -3.2171394700113658)
2146 (5068, -3.251448014120383)
2147 (5654, -3.3031488071002291)
2148 (4964, -3.3602302648260802)
2149 (5663, -3.386158192785258)
2150 (5104, -3.454627759093805)
2151 (5323, -3.4779891630384032)
2152 (3204, -3.5148837498524035)
2153 (4835, -3.5384845206634195)
2154 (1398, -3.6177075500988787)
2155 (4226, -3.6181133040445976)
2156 (4140, -3.705421760723965)
2157 (5558, -3.8119715094366144)
2158 (4267, -3.8276445646769477)
2159 (5234, -3.8908257482084974)
2160 (5781, -3.9339003869431557)
2161 (3792, -3.9373485196064455)
2162 (2458, -3.9955960793539091)
2163 (4531, -3.996580181169505)
2164 (2264, -4.033056564008124)
2165 (2539, -4.112934324539955)
2166 (3846, -4.1501753752154844)
2167 (5233, -4.1842216305773121)
2168 (836, -4.2597765369843046)
2169 (3464, -4.2644411239355904)
2170 (5699, -4.3277385451333092)
2171 (1827, -4.3470836109079309)
2172 (3544, -4.4090657793669799)
2173 (3192, -4.4120840875025706)
2174 (3541, -4.4157668439706024)
2175 (2449, -4.4167589173219044)
2176 (1868, -4.5983617045101655)
2177 (5726, -4.6698648760063621)
2178 (2265, -4.7225930742201836)
2179 (4627, -4.752914102407293)
2180 (216, -4.7657849800324001)
2181 (5686, -4.8227216553570589)
2182 (3168, -4.8353710303150521)
2183 (2084, -4.9368330301579419)
2184 (4989, -4.978373990407686)
2185 (5762, -4.9835845744118004)
2186 (5546, -5.0262675882466166)
2187 (5527, -5.0374761431736772)
2188 (4990, -5.1100833957064697)
2189 (4762, -5.1455489972585147)
2190 (2978, -5.1510790800511268)
2191 (5775, -5.1755452384034095)
2192 (3607, -5.25442469221721)
2193 (4942, -5.2864572751665966)
2194 (5020, -5.521324413322783)
2195 (4338, -5.5276242049978359)
2196 (3680, -5.5373933748993105)
2197 (5542, -5.5377651549835942)
2198 (4153, -5.5426676387264635)
2199 (4987, -5.6683603138744338)
2200 (1027, -5.6803363876262569)
2201 (4830, -5.7548434993493363)
2202 (3516, -5.7751806075213734)
2203 (4955, -5.7769715666336863)
2204 (4405, -5.8318393032482447)
2205 (4501, -5.8721651467226632)
2206 (2927, -5.887759777504157)
2207 (3468, -5.9028875217862353)
2208 (5636, -5.9095506695055677)
2209 (5149, -5.973297071590304)
2210 (4490, -6.0895464779941246)
2211 (4628, -6.327595261061445)
2212 (2345, -6.6530454805753241)
2213 (3687, -6.6703101692716835)
2214 (3091, -6.8902256773708102)
2215 (4601, -6.9110338533227935)
2216 (4514, -6.9875467838791554)
2217 (4404, -7.1951300173719952)
2218 (4045, -7.5551472165230793)
2219 (3976, -7.5588837395043811)
2220 (5225, -7.567522309392178)
2221 (4299, -7.9082538364434409)
2222 (5242, -7.9293943886190421)
2223 (4953, -7.9870087768717317)
2224 (5212, -8.1847908478195244)
2225 (3651, -8.2384444689818821)
2226 (3949, -8.3554317408351366)
2227 (306, -8.4295302364900042)
2228 (1580, -8.6683542509161224)
2229 (4188, -8.8223765576794175)
2230 (1642, -8.8450525822860904)
2231 (3788, -8.8457378508845004)
2232 (5601, -8.9844145115363752)
2233 (5591, -9.243112898548878)
2234 (1468, -9.4538984125703749)
2235 (1818, -9.4628136601583428)
2236 (3104, -9.4737835118595886)
2237 (1625, -9.6972227598921439)
2238 (5151, -9.9385675430136349)
2239 (617, -10.151322803300785)
2240 (5646, -10.274041739561232)
2241 (4661, -10.560623902451077)
2242 (5452, -10.891845219201898)
2243 (5130, -12.327070764611266)
2244 (3975, -12.389703622210016)
2245 (3981, -12.429025986961294)
2246 (2973, -12.539331608387576)
2247 (4217, -14.394933572740818)
2248 (1138, -14.579713512391079)
2249 (256, -15.438268674725213)
2250 (2613, -16.231781671266916)
67.87user 0.10system 1:08.05elapsed 99%CPU (0avgtext+0avgdata 399012maxresident)k
0inputs+0outputs (0major+53269minor)pagefaults 0swaps
  #9   Spotlight this post!  
Unread 28-03-2015, 15:12
MikLast's Avatar
MikLast MikLast is offline
CAO/Drive Coach
AKA: Mikal Dieatrick
FRC #4513 (Circuit Breakers)
Team Role: Leadership
 
Join Date: Jan 2015
Rookie Year: 2014
Location: Medical Lake, WA
Posts: 596
MikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond repute
Re: Analysis of team ranking

so is this just if all teams were at the DC regional based on their score?

It would put us in the top 30% of teams...
__________________

Check out the FRC Discord!

2014: programmer, scout
2015: programmer, admin, drive team
Innovation in control award, WVHS district event
Innovation in control award, CWU district event
finalist, PNW district championship
2016: CAO, Drive team.
Excellence In Engineering awad, WVHS District event

Last edited by MikLast : 28-03-2015 at 15:15.
  #10   Spotlight this post!  
Unread 28-03-2015, 16:01
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,102
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by dakaufma View Post
It finished in 68 seconds.
Try this instead:

1) compute N = AT∙A

2) compute d = AT∙b

3) compute teamscores = scipy.linalg.cho_solve(scipy.linalg.cho_factor(N), d)

... where A is np.array(matchdata) and b is np.array(matchscores)

The computation time should be reduced from 68 seconds to about 2 seconds or less.



Last edited by Ether : 28-03-2015 at 20:16.
  #11   Spotlight this post!  
Unread 28-03-2015, 16:09
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Re: Analysis of team ranking

Quote:
Originally Posted by MikLast View Post
so is this just if all teams were at the DC regional based on their score?
No, not quite, this is a slightly different computation. I'm trying to answer the question "how much value does each robot contribute to its alliance?"

In most (qualification) matches robots operate reasonably independently from one another. This makes my question a lot easier to answer -- if robots don't influence each other's performance, then each robot should contribute (on average) the same score to any alliance it plays with. So I've got one variable per team -- how many points it contributes to its alliance -- and I'm trying to solve for the set of values for these variables that comes closest to predicting the actual match scores.

The listing above is my estimate of how many points each robot contributes to its alliance (given no interaction with other robots)
  #12   Spotlight this post!  
Unread 28-03-2015, 16:13
MikLast's Avatar
MikLast MikLast is offline
CAO/Drive Coach
AKA: Mikal Dieatrick
FRC #4513 (Circuit Breakers)
Team Role: Leadership
 
Join Date: Jan 2015
Rookie Year: 2014
Location: Medical Lake, WA
Posts: 596
MikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by dakaufma View Post
No, not quite, this is a slightly different computation. I'm trying to answer the question "how much value does each robot contribute to its alliance?"

In most (qualification) matches robots operate reasonably independently from one another. This makes my question a lot easier to answer -- if robots don't influence each other's performance, then each robot should contribute (on average) the same score to any alliance it plays with. So I've got one variable per team -- how many points it contributes to its alliance -- and I'm trying to solve for the set of values for these variables that comes closest to predicting the actual match scores.

The listing above is my estimate of how many points each robot contributes to its alliance (given no interaction with other robots)
I understand that, then this just means that the teams at the DC regional were skewed, or something else?
Quote:
My script basically ran instantly on the DC regional alone, it just didn't scale well.
__________________

Check out the FRC Discord!

2014: programmer, scout
2015: programmer, admin, drive team
Innovation in control award, WVHS district event
Innovation in control award, CWU district event
finalist, PNW district championship
2016: CAO, Drive team.
Excellence In Engineering awad, WVHS District event
  #13   Spotlight this post!  
Unread 28-03-2015, 16:22
dakaufma dakaufma is offline
Registered User
AKA: David Kaufman
FRC #0449 (Blair Robot Project)
Team Role: Programmer
 
Join Date: Jan 2012
Rookie Year: 2009
Location: Silver Spring
Posts: 28
dakaufma is an unknown quantity at this point
Re: Analysis of team ranking

I haven't done any in-depth analysis, but DC doesn't look too far out of line from the set of all regionals.

@MikLast I think I misinterpreted what you were saying. This would be a reasonable estimate of how well teams would do if each team played this game without an alliance. So congrats if you team is in the top 30%, you have a good robot
  #14   Spotlight this post!  
Unread 28-03-2015, 16:26
MikLast's Avatar
MikLast MikLast is offline
CAO/Drive Coach
AKA: Mikal Dieatrick
FRC #4513 (Circuit Breakers)
Team Role: Leadership
 
Join Date: Jan 2015
Rookie Year: 2014
Location: Medical Lake, WA
Posts: 596
MikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond reputeMikLast has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by dakaufma View Post
@MikLast I think I misinterpreted what you were saying. This would be a reasonable estimate of how well teams would do if each team played this game without an alliance. So congrats if you team is in the top 30%, you have a good robot
Ah, i misunderstood you also then. Thank you for clarifying, and i cant wait to show my team this next week.
__________________

Check out the FRC Discord!

2014: programmer, scout
2015: programmer, admin, drive team
Innovation in control award, WVHS district event
Innovation in control award, CWU district event
finalist, PNW district championship
2016: CAO, Drive team.
Excellence In Engineering awad, WVHS District event
  #15   Spotlight this post!  
Unread 28-03-2015, 20:42
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,102
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Analysis of team ranking

Quote:
Originally Posted by Ether View Post

1) compute N = AT∙A

2) compute d = AT∙b

3) compute teamscores = scipy.linalg.cho_solve(scipy.linalg.cho_factor(N), d)

... where A is np.array(matchdata) and b is np.array(matchscores)

The computation time should be reduced from 68 seconds to about 2 seconds or less.
I'd run this test myself but I have Python2.7.5 installed and your Python3 code crashes when I try to run it. Not being very fluent in Python, I'm not in a good position to try to port it.

Based on some testing I did here, I'm fairly confident that your computation time can be dramatically reduced by making the small changes shown above.



Last edited by Ether : 28-03-2015 at 22:13.
Closed Thread


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 06:59.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi