Go to Post You inspire your way. I'll inspire my way. - Andrew Schreiber [more]
Home
Go Back   Chief Delphi > ChiefDelphi.com Website > Extra Discussion
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Reply
Thread Tools Rate Thread Display Modes
  #16   Spotlight this post!  
Unread 12-12-2015, 11:19 AM
RyanCahoon's Avatar
RyanCahoon RyanCahoon is offline
Disassembling my prior presumptions
FRC #0766 (M-A Bears)
 
Join Date: Dec 2007
Rookie Year: 2007
Location: Mountain View
Posts: 688
RyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond repute
Re: paper: Analysis of “a torque-actuated module” used for strafing in an H-drive.

Quote:
Originally Posted by GeeTwo View Post
The system I analyzed was simply the wheel with the attached gear and axle
Ah ok. Let me revise my list of interactions then:
  • the strafing module arm -> the wheel. You label the radial (relative to the drive axle) component of this B, and I think the tangent component L (though this isn't defined clearly in the paper)
  • the driving gear -> the wheel gear. You label this D
  • the ground -> the wheel (contact force). You label this N
  • the ground -> the wheel (frictional force). You label this F

The part that I was missing was fully understanding why L = 0.

I think I've discovered the divergence in reasonings: I analyzed the normal force under the condition where the wheel is locked to the strafing module arm, which implies that there are additional torques(forces) in the system than there actually are.

A nice way to see this (if there was anyone else who was confused) is to imagine that you have a wheel mounted on the end of an arm, kind of like a pinwheel, and you support the stick near where the wheel is attached. 1) If the wheel were fixed rotationally to the arm, then if you try to spin the wheel, a torque would be induced on the arm, cause it to spin as well. 2) However, if the wheel is free to spin, then spinning the wheel does not induce this torque on the arm.

The other half of the issue is to see that there is no torque induced directly on the strafing module arm by the motor. Thus, the only forces that could generate L are reaction forces. If it weren't for the meshed gears, the strafing module would be free to rotate about the drive axle, so there isn't any resistance in the tangential direction, thus nowhere for a reaction force to come from.


tl;dr I think I agree with your (Gus's) reasoning now.


I spent far more time thinking about this than I would have hoped to.
__________________
FRC 2046, 2007-2008, Student member
FRC 1708, 2009-2012, College mentor; 2013-2014, Mentor
FRC 766, 2015-, Mentor

Last edited by RyanCahoon : 12-12-2015 at 12:28 PM.
Reply With Quote
  #17   Spotlight this post!  
Unread 12-12-2015, 08:47 PM
GeeTwo's Avatar
GeeTwo GeeTwo is online now
Technical Director
AKA: Gus Michel II
FRC #3946 (Tiger Robotics)
Team Role: Mentor
 
Join Date: Jan 2014
Rookie Year: 2013
Location: Slidell, LA
Posts: 3,536
GeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond repute
Re: paper: Analysis of “a torque-actuated module” used for strafing in an H-drive.

Ryan,
I think I understand your reasoning, and based on that, only disagree on one minor point:
Quote:
Thus, the only forces that could generate L are reaction forces.
There is also the weight of the module, which is applied at the CoG, presumably a bit below the drive bearing when the module is horizontal, and thus will provide a slight torque about the drive bearing, and produce a bit of L in the upward/right direction. However, I have already argued that this force is negligible compared to the drive forces.
__________________

If you can't find time to do it right, how are you going to find time to do it over?
If you don't pass it on, it never happened.
Robots are great, but inspiration is the reason we're here.
Friends don't let friends use master links.
Reply With Quote
  #18   Spotlight this post!  
Unread 12-13-2015, 11:37 AM
RyanCahoon's Avatar
RyanCahoon RyanCahoon is offline
Disassembling my prior presumptions
FRC #0766 (M-A Bears)
 
Join Date: Dec 2007
Rookie Year: 2007
Location: Mountain View
Posts: 688
RyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond reputeRyanCahoon has a reputation beyond repute
Re: paper: Analysis of “a torque-actuated module” used for strafing in an H-drive.

Quote:
Originally Posted by GeeTwo View Post
There is also the weight of the module
Agreed; I've been concerned with the idealized analysis of the system - massless and frictionless (except for the wheel/ground interaction) - so I've been ignoring the weight forces.

A full analysis of this system would also incorporate the weight of the robot. This would have place an upper bound on the normal force produced, and thus inform the choice of final gear ratio.
__________________
FRC 2046, 2007-2008, Student member
FRC 1708, 2009-2012, College mentor; 2013-2014, Mentor
FRC 766, 2015-, Mentor
Reply With Quote
  #19   Spotlight this post!  
Unread 12-13-2015, 02:32 PM
GeeTwo's Avatar
GeeTwo GeeTwo is online now
Technical Director
AKA: Gus Michel II
FRC #3946 (Tiger Robotics)
Team Role: Mentor
 
Join Date: Jan 2014
Rookie Year: 2013
Location: Slidell, LA
Posts: 3,536
GeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond repute
Re: paper: Analysis of “a torque-actuated module” used for strafing in an H-drive.

Quote:
Originally Posted by RyanCahoon View Post
A full analysis of this system would also incorporate the weight of the robot. This would have place an upper bound on the normal force produced, and thus inform the choice of final gear ratio.
Also agreed. This analysis would be fairly typical for FRC, though focused on acceleration much more than top speed. If the robot were anticipated to be strafing at anything close to top speed, a less isotropic holonomic drive (mecanum, kiwi, or killough) or a crab or swerve drive would be in order.
__________________

If you can't find time to do it right, how are you going to find time to do it over?
If you don't pass it on, it never happened.
Robots are great, but inspiration is the reason we're here.
Friends don't let friends use master links.
Reply With Quote
Reply


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 12:03 AM.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi