Go to Post You can never have enough FIRST! :D - Koko Ed [more]
Home
Go Back   Chief Delphi > Other > Math and Science
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Reply
Thread Tools Rate Thread Display Modes
  #1   Spotlight this post!  
Unread 14-07-2016, 10:28
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Math Quiz 9


What's the average length of all the line segments which can be drawn inside a 1 inch square?

(accurate to 5 decimal digits)

(show your work)



Attached Thumbnails
Click image for larger version

Name:	square.png
Views:	185
Size:	1.8 KB
ID:	20908  
Reply With Quote
  #2   Spotlight this post!  
Unread 14-07-2016, 10:51
Jon Stratis's Avatar
Jon Stratis Jon Stratis is online now
Electrical/Programming Mentor
FRC #2177 (The Robettes)
Team Role: Mentor
 
Join Date: Feb 2007
Rookie Year: 2006
Location: Minnesota
Posts: 3,736
Jon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond repute
Re: Math Quiz 9

point of clarification: I assume you mean the average of all possible line segments, which allows for intersecting and overlapping lines, if drawn within a single square. For example, you could have an X formed by two lines stretching from opposite corners, or you could have two lines that lay on top of each other, one going from corner to opposite corner and the other from the center to the same corner.
__________________
2007 - Present: Mentor, 2177 The Robettes
LRI: North Star 2012-2016; Lake Superior 2013-2014; MN State Tournament 2013-2014, 2016; Galileo 2016; Iowa 2017
2015: North Star Regional Volunteer of the Year
2016: Lake Superior WFFA
Reply With Quote
  #3   Spotlight this post!  
Unread 14-07-2016, 13:48
smitikshah's Avatar
smitikshah smitikshah is offline
Drive Coach
AKA: Smiti
FRC #2869 (Regal Eagles)
Team Role: Coach
 
Join Date: Dec 2015
Rookie Year: 2015
Location: New York
Posts: 146
smitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond reputesmitikshah has a reputation beyond repute
Re: Math Quiz 9

by "inside" are they allowed to touch the edge of the square?
__________________
Reply With Quote
  #4   Spotlight this post!  
Unread 14-07-2016, 14:07
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Math Quiz 9

Quote:
Originally Posted by smitikshah View Post
by "inside" are they allowed to touch the edge of the square?
Does it matter?


Reply With Quote
  #5   Spotlight this post!  
Unread 14-07-2016, 14:27
Hitchhiker 42's Avatar
Hitchhiker 42 Hitchhiker 42 is offline
Roboter
AKA: Mark Lavrentyev
FRC #4557 (FullMetal Falcons)
Team Role: Programmer
 
Join Date: Oct 2015
Rookie Year: 2015
Location: Cromwell, CT
Posts: 471
Hitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to behold
Re: Math Quiz 9

Quote:
Originally Posted by Ether View Post

What's the average length of all the line segments which can be drawn inside a 1 inch square?

(accurate to 5 decimal digits)

(show your work)



.42833
I I'll post my work tonight

What assumed was that when you do this, every line length possible creates a square with rounded edges with radius from 0 to 1/2. So I integrated all those together and divided by 1/2 to get my answer
__________________



2016 - NE District Championship Entrepreneurship Award
2016 - Hartford District Industrial Design Award
2016 - Waterbury District Engineering Inspiration Award

Last edited by Hitchhiker 42 : 14-07-2016 at 15:10.
Reply With Quote
  #6   Spotlight this post!  
Unread 14-07-2016, 14:34
Jon Stratis's Avatar
Jon Stratis Jon Stratis is online now
Electrical/Programming Mentor
FRC #2177 (The Robettes)
Team Role: Mentor
 
Join Date: Feb 2007
Rookie Year: 2006
Location: Minnesota
Posts: 3,736
Jon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond repute
Re: Math Quiz 9

My second attempt over lunch came up with 0.55272, but I'm pretty sure that's not right (It's too high). I know what i'm missing from my equations (logically, even if i haven't figured out how to express it mathematically just yet) though.

I just wish I remembered more of my calculus than I do!
__________________
2007 - Present: Mentor, 2177 The Robettes
LRI: North Star 2012-2016; Lake Superior 2013-2014; MN State Tournament 2013-2014, 2016; Galileo 2016; Iowa 2017
2015: North Star Regional Volunteer of the Year
2016: Lake Superior WFFA
Reply With Quote
  #7   Spotlight this post!  
Unread 14-07-2016, 15:12
Jon Stratis's Avatar
Jon Stratis Jon Stratis is online now
Electrical/Programming Mentor
FRC #2177 (The Robettes)
Team Role: Mentor
 
Join Date: Feb 2007
Rookie Year: 2006
Location: Minnesota
Posts: 3,736
Jon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond repute
Re: Math Quiz 9

I finally came up with 0.28967 as my final answer. Work below, colored white so people can ignore it until they've done their own work on the problem Note: I don't remember my calculus very well anymore, so I had to use wolfram alpha to get me (hopefully) close enough!

To solve this (assuming it's correct), I needed a couple of components and assumptions/assertions.

Lets start with a simple case - the average length of line segments contained within a N length line. A good description of this can be found here: http://math.stackexchange.com/questi...ints-on-a-line

What that boils down to, is that if I draw a line such that it intersects two edges of the square, taking the length of that line divided by 3 gives me the average length of every line segment that sits on that line. This little trick lets us GREATLY simplify the calculations, as we can use it to assume we're only looking at lines that intersect two walls of the square, and effectively ignore snort lines that don't intersect the lines of the square.

So, with that in hand, we can now figure out the length of every possible line that intersects two lines of the square. This can be broken down into two categories: lines that intersect adjacent edges of the square, and lines that intersect non-adjacent edges. Due to the symmetry of a square, we know that the first group can be simplified into 4 repetitions (top/right, right/bottom, bottom/left, left/top) and the second into 2 repetitions (top/bottom, left/right). This will come in handy later.

So, lets look at the case where you have adjacent sides. You really have two variables here, X and Y, each being an independent number between 0 and 1 representing their location on one of the sides, and the line that stretches between them. The length of that line, as defined by the Pythagorean Theorem is sqrt(x^2+y^2)... but remember we want that length/3 to get the average length of line segments along it. And remember that we have an infinite number of points between 0 and 1 for both x and y... calculus! So, written in a form wolfram alpha will recognize, integrating over x and y gives us:

integrate integrate (sqrt(x^2+y^2)/3) dx dy from 0 to 1 from 0 to 1

or 0.255065.

We can do the same for the case of non adjacent sides. Here the equation is a little trickier, but ultimately the line length is sqrt((x-y)^2+1). Dividing by 3 and integrating gives us:

integrate integrate (sqrt((x-y)^2+1)/3) dx dy from 0 to 1 from 0 to 1

or 0.358879.

Keep in mind that the average of an integral is that integral times 1/(b-a) - in this case, b-a is 1, so we don't need to do anything else.

So, lets get these two numbers together. Remember, we have 4 sets of the adjacent sides, and 2 sets of the non-adjacent sides. And since those sides all integrated over the same values, we should just be able to average the sets, right? So, averaging those in proportion gives us:

(4*0.255065 + 2*0.358879)/6

or 0.28967.
__________________
2007 - Present: Mentor, 2177 The Robettes
LRI: North Star 2012-2016; Lake Superior 2013-2014; MN State Tournament 2013-2014, 2016; Galileo 2016; Iowa 2017
2015: North Star Regional Volunteer of the Year
2016: Lake Superior WFFA
Reply With Quote
  #8   Spotlight this post!  
Unread 14-07-2016, 17:10
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Math Quiz 9

Quote:
Originally Posted by Jon Stratis View Post
I finally came up with 0.28967 as my final answer.
Do a sanity check with a simple Monte Carlo simulation.


Reply With Quote
  #9   Spotlight this post!  
Unread 14-07-2016, 18:58
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Math Quiz 9

Quote:
Originally Posted by Hitchhiker 42 View Post
every line length possible creates a square with rounded edges


Quote:
So I integrated all those together and divided by 1/2
Reply With Quote
  #10   Spotlight this post!  
Unread 14-07-2016, 21:32
euhlmann's Avatar
euhlmann euhlmann is online now
CTO, Programmer
AKA: Erik Uhlmann
FRC #2877 (LigerBots)
Team Role: Leadership
 
Join Date: Dec 2015
Rookie Year: 2015
Location: United States
Posts: 312
euhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud ofeuhlmann has much to be proud of
Re: Math Quiz 9

Here's my wild guess: 0.52026

In other words, sqrt(2)/e

Why?

I ran a simulation with 100M iterations and got 0.521388
The value seemed to be decreasing with greater numbers of iterations. Then I plugged the value into this handy tool and took the first result
__________________
Creator of SmartDashboard.js, an extensible nodejs/webkit replacement for SmartDashboard


https://ligerbots.org
Reply With Quote
  #11   Spotlight this post!  
Unread 14-07-2016, 21:52
GeeTwo's Avatar
GeeTwo GeeTwo is offline
Technical Director
AKA: Gus Michel II
FRC #3946 (Tiger Robotics)
Team Role: Mentor
 
Join Date: Jan 2014
Rookie Year: 2013
Location: Slidell, LA
Posts: 3,570
GeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond reputeGeeTwo has a reputation beyond repute
Re: Math Quiz 9

After seeing the original post earlier today, I did not check back until I had this. It does not seem that anyone got as far as I did:

Initial thoughts and reasoning:
After looking at the problem for about a minute, my "eyeball integrator" came up with "a bit ovor 0.5". While I did not go through all these steps conciously, this is roughly what I think happened:

Consider a circles of radius 1/2 unit and 1 unit. Considering 25 points in a 5x5 grid, including the corners of the square and the center of the square.
When the circles are co-centered with the square, about 79% of the square is inside the small circle, all within the large circle. There is one such point.
When the circles are located halfway between the center and an edge, the small circle covers 66% of the square, the large circle all of the square. There are four such points.
When the circles are located halfway between the center and a corner, the small circle covers 55% of the circle. The large circle covers 99+% of the square (ignore). There are four such points.
When the circles are located at the center of an edge, the small circle covers 37% of the large square. About 4% of the square is outside of the large circle. There are four such points, but only half of a square centered here is inside the square. Weight=2.
When the circles are located halfway between the previous point and a corner, the small circle covers 33% of the square. About 8% of the square is outside the large circle. There are 8 such points, only half of the square centered here is inside the big square. Weight = 4.
When the circles are located at the corner, only 18% of the square is inside the small circle, and 21% of the square is outside the large circle. There are four points, onle a quarter of a square centered here is inside the big square. Weight=1.
Therefore, for an arbitrary point, .79 + .18 + 2 * .37 + 4 * (.66 + .55 + .33) / 16 = 49% of segments are shorter than 1/2 a unit. Likewise, (.04*2 + .08 * 4 + .21 * 1)/16 = 4% of the segments are longer than a full unit. I expect the answer to be close to a half unit, perhaps a bit larger.
Next, a numerical solution:
Code:
#!/bin/gawk -f
BEGIN {
  for (steps=10; steps<200; steps+=10){
    numer=denom=0;
    for (i=0; i< steps; i++)
      for (j=0; j< steps; j++)
        for (k=0; k< steps; k++)
          for (l=0; l< steps; l++) {
            numer += sqrt((i-j)*(i-j)+(k-l)*(k-l));
            denom+=steps;
    }
    print steps, numer/denom
  }
}
Output: [code]
10 0.518687
20 0.520757
30 0.521121
40 0.521247
50 0.521304
60 0.521336
70 0.521354
80 0.521366
90 0.521375
100 0.52138
110 0.521385
120 0.521388
130 0.521391
140 0.521393
150 0.521394
160 0.521396
170 0.521397
180 0.521398
190 0.521399

This appears to meet Ether's criterion of 5 significant digits at ".52140".

Nonetheless, let's try to find a closed-form solution. As indicated in my numerical solution, the problem is at its most basic the ratio of two quadruple integrals over the interval of [0,1], the content of the numerator integral being the hypotenuse formula and the denominator being unity. As integrating 1 over the range 0 to 1 yields 1, doing this four times still yields one, so we can skip the denominator. I recognize that this solution counts all of the non-zero-length segments twice,and the zero-length segments only once. As there are infinitely fewer zero-length segments than non-zero-length segments, and I am calculating an average, this is a problem that I can safely ignore.
I had originally envisioned (i,j) as one point, and (k,l) as the other point, and did not see how to approach the problem. Fortunately, I used the form above for the numerical solution, which seems to indicate a simpler integral.
Let us address the simpler problem of "What is the average length of a segment within the unit line segment?" and keep track of the statistics. This problem is more easily understood by considering individual points for the "outer integral" and what the lengths are for the "inner integral".
When the outer integral as near the center, the inner integral yield lengths equally likely between 0 and 0.5 (one each way). When the outer integral variable is at an end, the inner integral value yields lengths equally likely between 0 and 1.
When the outer integral variable has a value x<0.5, the inner integral yeilds 2 solutions for numbers less than x, and one for answers between x and 1-x.
These indicate a linear ramp of "x-lengths" from a maximum likelihood of 1.0 at lenth zero, to a likelihood of 0.0 at length one. Multiplying this by the line length yields the integral of 2(1-x)(x), or 2(x-x2). The integral of 2x over 0..1 is one. The integral of 2x2 over 0..1 is 2/3. The average length of a segment on a unit segment is 1/3.

The simple linear ramp found in the integral above implies a fairly simple two-variable integral for the average length of a segment in a square:
4ʃʃ(1-x)(1-y)√(x2+y2)dxdy, both integrals being over 0..1.
After looking for a couple of hours, I’ll admit that I do not see an obvious closed-form solution. Unless I find one in the thread, I’ll probably search for one on and off for the next two or three months.
__________________

If you can't find time to do it right, how are you going to find time to do it over?
If you don't pass it on, it never happened.
Robots are great, but inspiration is the reason we're here.
Friends don't let friends use master links.

Last edited by GeeTwo : 15-07-2016 at 07:09. Reason: Added four to integral - missed a factor of two in each integral. Added a bit more detail to get to 1/3.
Reply With Quote
  #12   Spotlight this post!  
Unread 16-07-2016, 09:01
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Math Quiz 9

Quote:
Originally Posted by Ether View Post
(accurate to 5 decimal digits)
No one has yet come up with an answer correct to 5 decimal places.

OK to use whatever computational tools you like.



Reply With Quote
  #13   Spotlight this post!  
Unread 16-07-2016, 11:11
Hitchhiker 42's Avatar
Hitchhiker 42 Hitchhiker 42 is offline
Roboter
AKA: Mark Lavrentyev
FRC #4557 (FullMetal Falcons)
Team Role: Programmer
 
Join Date: Oct 2015
Rookie Year: 2015
Location: Cromwell, CT
Posts: 471
Hitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to behold
Re: Math Quiz 9

Here's a script I wrote in order to try to solve this problem. My second attempt was to, for each line length find the area where the center of the line could be. This resulted, for line length 0 --> 1 in a box with quarter circles cut out. For 1 --> sqrt(2), it was a little more complicated. Overall, it gives the answer of 0.77019523
Attached Files
File Type: java AvgLengthFinder.java (1.8 KB, 9 views)
__________________



2016 - NE District Championship Entrepreneurship Award
2016 - Hartford District Industrial Design Award
2016 - Waterbury District Engineering Inspiration Award
Reply With Quote
  #14   Spotlight this post!  
Unread 16-07-2016, 17:11
Ether's Avatar
Ether Ether is offline
systems engineer (retired)
no team
 
Join Date: Nov 2009
Rookie Year: 1969
Location: US
Posts: 8,028
Ether has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond reputeEther has a reputation beyond repute
Re: Math Quiz 9

Quote:
Originally Posted by Hitchhiker 42 View Post
0.77019523
Sanity-check your answer with a simple Monte Carlo simulation.



*this can be done with a one-line AWK script
Reply With Quote
  #15   Spotlight this post!  
Unread 16-07-2016, 17:14
Hitchhiker 42's Avatar
Hitchhiker 42 Hitchhiker 42 is offline
Roboter
AKA: Mark Lavrentyev
FRC #4557 (FullMetal Falcons)
Team Role: Programmer
 
Join Date: Oct 2015
Rookie Year: 2015
Location: Cromwell, CT
Posts: 471
Hitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to beholdHitchhiker 42 is a splendid one to behold
Re: Math Quiz 9

Quote:
Originally Posted by Ether View Post
Sanity-check your answer with a simple Monte Carlo simulation.



*this can be done with a one-line AWK script
What is a Monte Carlo simulation?
__________________



2016 - NE District Championship Entrepreneurship Award
2016 - Hartford District Industrial Design Award
2016 - Waterbury District Engineering Inspiration Award
Reply With Quote
Reply


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 12:06.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi