|
|
|
![]() |
|
|||||||
|
||||||||
![]() |
|
|
Thread Tools | Rate Thread | Display Modes |
|
|
|
#1
|
||||
|
||||
|
Re: numerical solution of differential equations
OK.
x(t) = 1/4*t^3 + 1 is the analytical solution to the Initial Value Problem a(t) = sqrt(3*v(t)) with initial values* x(0.01) = 1.00000025 and v(0.01) = 7.5e-5 As you can see from the spreadsheet, the Midpoint method gives much better results for that IVP than Forward Euler and Forward/Backward Euler. * selected to avoid the stationary point at t=0 |
|
#2
|
|||||
|
|||||
|
Re: numerical solution of differential equations
Quote:
Quote:
if x=Ae√3t/√2, then x'=√3Ae√3t/√2/√2 (chain rule) and x''=3Ae√3t/√2/2 (chain rule again) = 3x/2. Edit: I knew there was more to it, and just figured out the other part: x''=3x/2 ==> x= Ae√3t/√2 + Be-√3t/√2 Last edited by GeeTwo : 12-25-2016 at 04:47 AM. |
![]() |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|