Go to Post "Drink Mountain Dew. Eat Pizza. Make Robot. This is life." - onecoolc [more]
Home
Go Back   Chief Delphi > Other > Math and Science
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Reply
Thread Tools Rating: Thread Rating: 4 votes, 5.00 average. Display Modes
  #1   Spotlight this post!  
Unread 18-04-2004, 17:37
Dejhan_Tulip Dejhan_Tulip is offline
Registered User
no team
 
Join Date: Feb 2004
Location: Bolivia
Posts: 12
Dejhan_Tulip has a little shameless behaviour in the past
Question Complex Equation Solver

Hi everyone !

Lately in this Statics class I have been running into problems with complex equations. For example, today I have to solve this 2 equations and 2 unknows: (The unknowns are N and x; Note that itan = arctan = tan^-1)

(1) 0.4N - 75cos(itan(12/x)) = 0
(2) N - 180 + 75sin(itan(12/x)) = 0

They seem not "that" hard but they are if I try to solve them by hand

I was wondering if anyone could give me the answer to N and x for those equatios, and also if anyone knows any software that would solve those kind of equations I would really appreciate it if you can give me the name, website, anything Thank you very much.

Have a good one,

--D.T.

Last edited by Dejhan_Tulip : 18-04-2004 at 18:07.
Reply With Quote
  #2   Spotlight this post!  
Unread 18-04-2004, 19:19
Yan Wang's Avatar
Yan Wang Yan Wang is offline
Ithaca is Gorges
AKA: John Wayne
FRC #0639 (Code Red Robotics)
Team Role: Alumni
 
Join Date: Sep 2002
Rookie Year: 2001
Location: Cambridge, MA
Posts: 1,910
Yan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud of
Send a message via ICQ to Yan Wang Send a message via AIM to Yan Wang Send a message via MSN to Yan Wang Send a message via Yahoo to Yan Wang
Re: Complex Equation Solver

The TI89 or HP49G+ calculators have multivariable equation solvers built in. But I don't feel like pulling mine out.

As for software, my copy of Mathematica can easily do it. Along with most anything else I need related to math or physics.
__________________
Code Red Robotics Team 639 Alumnus | www.team639.org
<Patrician|Away> what does your robot do, sam
<bovril> it collects data about the surrounding environment, then discards it and drives into walls
Reply With Quote
  #3   Spotlight this post!  
Unread 18-04-2004, 19:21
mtrawls's Avatar
mtrawls mtrawls is offline
I am JVN! (John von Neumann)
#0122 (NASA Knights)
Team Role: Programmer
 
Join Date: Mar 2003
Location: Hampton, VA
Posts: 295
mtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to behold
Send a message via AIM to mtrawls
Re: Complex Equation Solver

Never fear, this isn't a complex equation at all! (Why, you'd have to have the sqrt of -1 for that to be the case ).

To get the answer, it is a simple trig "trick" -- i.e., once you see it it's not that hard. Think about what the inverse tangent of 12/x represents. It equals some angle from a right triangle whose "opposite" side is 12 and whose "adjacent" side is x (because tan theta is opp/adj). Then you want to find the cos (and sin) of this angle. Well, cos is adj/hyp and sin is opp/hyp -- and from the previous argument, you know both adj and opp, so all that is left is to find the hypotenouse. Just form the triangle ...

Code:
    |\
12  | \  hyp
    |_(\
     x
But from the pythagorean theorum you know that hyp = sqrt(144+x^2). Well, then you can get the system of equations in terms of x without any nasty trig functions, which should make it pretty simple to solve (I'm assuming you can solve systems of equations and the trig was throwing you off ... if not, just ask for an explanation!)

Oh, and an 89 is good for just about anything Or mathematica, if you have the software (somewhat pricey). But nothing beats pen and paper!
Reply With Quote
  #4   Spotlight this post!  
Unread 18-04-2004, 19:24
Dejhan_Tulip Dejhan_Tulip is offline
Registered User
no team
 
Join Date: Feb 2004
Location: Bolivia
Posts: 12
Dejhan_Tulip has a little shameless behaviour in the past
Re: Complex Equation Solver

Quote:
Originally Posted by Yan Wang
The TI89 or HP49G+ calculators have multivariable equation solvers built in. But I don't feel like pulling mine out.

As for software, my copy of Mathematica can easily do it. Along with most anything else I need related to math or physics.


Can you tell me why did you bother replying a post like that ??

You can do it, but you are not going to do it. You know how to do it, but you don't feel like it. You have the software that would be able to compute it, but you don't use it to get the answer and post it.

I wonder why you are even reading posts... dude, go to bed, watch some TV, and do something you "feel" like doing it.

--D.T.

P.S. I really would like someone to help me out in this one, this HW is kind of important. Thanks a lot in advance
Reply With Quote
  #5   Spotlight this post!  
Unread 18-04-2004, 19:28
Yan Wang's Avatar
Yan Wang Yan Wang is offline
Ithaca is Gorges
AKA: John Wayne
FRC #0639 (Code Red Robotics)
Team Role: Alumni
 
Join Date: Sep 2002
Rookie Year: 2001
Location: Cambridge, MA
Posts: 1,910
Yan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud of
Send a message via ICQ to Yan Wang Send a message via AIM to Yan Wang Send a message via MSN to Yan Wang Send a message via Yahoo to Yan Wang
Re: Complex Equation Solver

Quote:
Originally Posted by Dejhan_Tulip
Can you tell me why did you bother replying a post like that ??

You can do it, but you are not going to do it. You know how to do it, but you don't feel like it. You have the software that would be able to compute it, but you don't use it to get the answer and post it.

I wonder why you are even reading posts... dude, go to bed, watch some TV, and do something you "feel" like doing it.

--D.T.

P.S. I really would like someone to help me out in this one, this HW is kind of important. Thanks a lot in advance
Because you asked the following:

Quote:
and also if anyone knows any software that would solve those kind of equations I would really appreciate it if you can give me the name, website, anything
And though I was too LAZY to do it myself, I did contribute to the thread by answering your question regarding software or "anything" that would solve the problem you proposed. I did not post a completely non-informative response as you seem to be suggesting.
__________________
Code Red Robotics Team 639 Alumnus | www.team639.org
<Patrician|Away> what does your robot do, sam
<bovril> it collects data about the surrounding environment, then discards it and drives into walls
Reply With Quote
  #6   Spotlight this post!  
Unread 18-04-2004, 19:32
Dejhan_Tulip Dejhan_Tulip is offline
Registered User
no team
 
Join Date: Feb 2004
Location: Bolivia
Posts: 12
Dejhan_Tulip has a little shameless behaviour in the past
Re: Complex Equation Solver

Quote:
Originally Posted by mtrawls
Never fear, this isn't a complex equation at all! (Why, you'd have to have the sqrt of -1 for that to be the case ).

To get the answer, it is a simple trig "trick" -- i.e., once you see it it's not that hard. Think about what the inverse tangent of 12/x represents. It equals some angle from a right triangle whose "opposite" side is 12 and whose "adjacent" side is x (because tan theta is opp/adj). Then you want to find the cos (and sin) of this angle. Well, cos is adj/hyp and sin is opp/hyp -- and from the previous argument, you know both adj and opp, so all that is left is to find the hypotenouse. Just form the triangle ...

Code:
    |\
12  | \  hyp
    |_(\
     x
But from the pythagorean theorum you know that hyp = sqrt(144+x^2). Well, then you can get the system of equations in terms of x without any nasty trig functions, which should make it pretty simple to solve (I'm assuming you can solve systems of equations and the trig was throwing you off ... if not, just ask for an explanation!)

Oh, and an 89 is good for just about anything Or mathematica, if you have the software (somewhat pricey). But nothing beats pen and paper!



Thanks a lot for your reply !!

However, that is exactly what I did and the equation didn't get any simpler

If you do that and solve for X you have still cosines and sines involved and while it seems to get a little simpler it doesn't

I thought I was kind of good at doing this, I already passed all Calculus classes but this got me.

Any clarification, solution, procedure will be greatly appreciated.

Thanks a lot,

--D.T.
Reply With Quote
  #7   Spotlight this post!  
Unread 18-04-2004, 19:45
mtrawls's Avatar
mtrawls mtrawls is offline
I am JVN! (John von Neumann)
#0122 (NASA Knights)
Team Role: Programmer
 
Join Date: Mar 2003
Location: Hampton, VA
Posts: 295
mtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to beholdmtrawls is a splendid one to behold
Send a message via AIM to mtrawls
Re: Complex Equation Solver

Quote:
Originally Posted by Dejhan_Tulip
Thanks a lot for your reply !!

However, that is exactly what I did and the equation didn't get any simpler

If you do that and solve for X you have still cosines and sines involved and while it seems to get a little simpler it doesn't
Given the system of equations:

(1) 0.4N - 75cos(itan(12/x)) = 0
(2) N - 180 + 75sin(itan(12/x)) = 0

Then, working on them as described above (e.g., cos(itan(12/x)) = x/sqrt(144+x^2) ...), reduces to:

(1) 0.4N - 75x/sqrt(144+x^2) = 0
(2) N - 180 + 900/sqrt(144+x^2) = 0

Which eliminates the sines/cosines in the equations. Solving for x here shouldn't give you any sines/cosines, but rather a number (provided the system is consistent). Now, that might not be "simple" by some standards ... but it should be solvable -- if not by hand, then more quickly by a calculator/"dumb box." I'd recommend starting by multiplying (2) by -4/10 and adding the two equations together, which would then allow you to solve for x. Then plug this value back into one of the equations and solve for N.
Reply With Quote
  #8   Spotlight this post!  
Unread 18-04-2004, 20:49
Yan Wang's Avatar
Yan Wang Yan Wang is offline
Ithaca is Gorges
AKA: John Wayne
FRC #0639 (Code Red Robotics)
Team Role: Alumni
 
Join Date: Sep 2002
Rookie Year: 2001
Location: Cambridge, MA
Posts: 1,910
Yan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud ofYan Wang has much to be proud of
Send a message via ICQ to Yan Wang Send a message via AIM to Yan Wang Send a message via MSN to Yan Wang Send a message via Yahoo to Yan Wang
Re: Complex Equation Solver

I was bored a couple minutes ago and decided to solve this thing...

Answer: x = 10.52, n = 123.60 (to two decimal places)

In the last step, before finding x, I just used the quadratic equation. To find n, I just plugged x back into both the given equations and voila, n was the same in both. So it works.

Solution attached below as jpeg. Note that my handwriting depreciates greatly the farther along I get into any math problem
Attached Thumbnails
Click image for larger version

Name:	solution 001 (Custom).jpg
Views:	104
Size:	68.3 KB
ID:	2148  
__________________
Code Red Robotics Team 639 Alumnus | www.team639.org
<Patrician|Away> what does your robot do, sam
<bovril> it collects data about the surrounding environment, then discards it and drives into walls
Reply With Quote
  #9   Spotlight this post!  
Unread 18-04-2004, 21:13
Dejhan_Tulip Dejhan_Tulip is offline
Registered User
no team
 
Join Date: Feb 2004
Location: Bolivia
Posts: 12
Dejhan_Tulip has a little shameless behaviour in the past
Re: Complex Equation Solver

Thanks a lot guys !!!! You all ROCK !!!!

Reply With Quote
Reply


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Recursion? Phasmatis568 Programming 40 17-12-2003 17:26
Kamen: Napolean Complex or Salesmanship Jordan A. Rumor Mill 27 26-07-2002 21:23


All times are GMT -5. The time now is 03:16.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi