Quote:
Originally Posted by poohbear
-the body is milled from a solid block of 7071 aluminum (with our sponsor's five axis mill) to retain the maximum structural strength.
-the wheels are decagons instead of circles. NOW can we squeeze in more than tangential contact every tenth of a rotation, therefore we get more traction.
-the wheel formation allows for no "getting pushed around" and great defense. We might be the rookies, but thanks to our ingenuity, we're not going to get bullied on the field 
-these four wheels are directly driven by CIMs so we can zip across the field at 154 fps according to JVN Design Calculator (great tool by the way guys).
-the bot fits in a 26x26 square. its octagonal shape allows for surface area for electronics.
|
-Frame milled from solid...um...wow! How long is that operation going to take, and how much does that block of aluminum cost??
(seriously, check this, if the block is over $400 market value, you may run into trouble)
-Has the wheels/wheel formation been prototyped? I'm intrigued, yet skeptical of how well it will work. Do the corners of the wheels have low-traction material? This formation typically uses omniwheels for multi-directional motion, and I'm not sure how it will work with traction wheels.
-Again, you may want to prototype and see just how much traction you gain from decagon-shaped wheels, and whether it's worth the bumpy ride.
-Direct drive from CIMs...That's not quite how it works. Gear reductions add torque, and a free-spinning CIM does not have close to enough to move a robot effectively. You may want to look at JVN's calculator again, and see how much torque it will take for a 6-8" wheel to effectively acccelerate 150-ish pounds of robot. The fastest I've ever heard of a robot moving is 18-ish feet per second. Also, consider the drivers. Do they have the reaction time to effectively control a speedy robot? Might slowing it down, in some ways, speed you up?