OCCRA
Go to Post This isn't about practical, it's about having fun and thinking outside the box... tetrahedron.... whatever....:rolleyes: - Cyberguy34000 [more]
Home
Go Back   Chief Delphi > Technical > Electrical
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Reply
Thread Tools Rate Thread Display Modes
  #46   Spotlight this post!  
Unread 05-14-2018, 07:39 PM
Oblarg Oblarg is online now
Registered User
AKA: Eli Barnett
FRC #0449 (The Blair Robot Project)
Team Role: Mentor
 
Join Date: Mar 2009
Rookie Year: 2008
Location: Philadelphia, PA
Posts: 1,892
Oblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Mr V View Post
Unless your set up and code is designed to measure the voltage of the battery at the battery terminal then you are reading the resistance of the entire circuit which includes all of the connections, wire and breaker.
I'm well aware of this, which is why I mentioned the gauge wire we use and the length of the run. But, as we're interested in operating conditions on an actual robot, this resistance (including wiring to the PDP) is what matters, not the "actual" internal resistance of the battery.

Quote:
I would also like to see this. Since this discussion is about the potential benefits of 2 vs 4 vs 6 ga the code could be used to determine the real world benefits if someone was willing to take the time and swap between the different gauges using the same battery with each set up.
I've already posted the code and an explanation above.
__________________
"Mmmmm, chain grease and aluminum shavings..."
"The breakfast of champions!"

Member, FRC Team 449: 2007-2010
Drive Mechanics Lead, FRC Team 449: 2009-2010
Alumnus/Technical Mentor, FRC Team 449: 2010-Present
Lead Technical Mentor, FRC Team 4464: 2012-2015
Technical Mentor, FRC Team 5830: 2015-2016


FRC Drivetrain Characterization
Reply With Quote
  #47   Spotlight this post!  
Unread 05-17-2018, 10:58 AM
Mike9966's Avatar
Mike9966 Mike9966 is offline
Mentor Mike
FRC #2846 (Fire Bears)
Team Role: Mentor
 
Join Date: Nov 2008
Rookie Year: 2008
Location: Minnesota
Posts: 73
Mike9966 is an unknown quantity at this point
Re: 2 AWG Battery Cables

Hi all,
There was an interesting talk at worlds in Detroit a few weeks ago about testing batteries.
Their tester actually uses big power resistors (max current I think is 125A) turned on and off with mosfets, and they have software to simulate the rigors of an actual match, as well as just a quick test. Read their paper.
One of the things they came up with is the internal resistance.
In short, the mid teens in mOhms is about the best, and their testing shows how batteries definitely get worse (internal resistance wise) as they age, get dropped, etc..
Here's their web site, no affiliation, just an electrical guy who is interested in these things.
http://the-charge.com/index.html

Also, I'll throw in there that we ran some numbers last fall with our electrical team and while I don't remember the exact numbers, we came to the loose conclusion that one is only able to deliver about 60 amps to a stalled CIM, give or take 10 amps, in the drive train.
This would indicate to me that the combined system resistance, PDB, SRX, wire, connectors, breakers, etc., is about the same as (again, loosely) as the resistance of our 4 drive motors.

I like the idea of 2 AWG, and may try it out next fall with the team.
As far as sharing batteries, etc, just make an adapter. I know we have several of these to go from the SB50 size to the regular 45A power poles we use for testing purposes.
Although, now that I said this, there could be rule problems? 120>>50?

Thanks for an interesting thread everyone,
Mike
__________________
Do Your Best!
Go FireBears
2009-2018 10 years of robots
Reply With Quote
  #48   Spotlight this post!  
Unread 05-17-2018, 12:26 PM
Andy A. Andy A. is offline
Getting old
FRC #0095
Team Role: Coach
 
Join Date: Jun 2001
Rookie Year: 2001
Location: New Hampshire
Posts: 1,070
Andy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond reputeAndy A. has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Mike9966 View Post
As far as sharing batteries, etc, just make an adapter. I know we have several of these to go from the SB50 size to the regular 45A power poles we use for testing purposes.
Although, now that I said this, there could be rule problems? 120>>50?

Thanks for an interesting thread everyone,
Mike
The current rule set, specifically R46, allows for only one SB type connector pair on the robot, so adapters aren't legal.

It's probably something that one could lobby FIRST for a rule change on, since the wording of the rule strikes me as being something created to eliminate ambiguity on the high current pathways of the robot, and not recognizing some inherent issue with multiple SB type connectors in series.

If you really want to use both SB120s and loan batteries, just bring your old SB50 wire assemblies and swap them onto the loaned out batteries. It's not all that much effort, really.

We do have a SB120 to SB50 adapter, but it's really just for adapting the battery beak these days.
Reply With Quote
  #49   Spotlight this post!  
Unread 05-17-2018, 12:55 PM
Jon Stratis's Avatar
Jon Stratis Jon Stratis is offline
Mentor, LRI, MN RPC
FRC #2177 (The Robettes)
Team Role: Mentor
 
Join Date: Feb 2007
Rookie Year: 2006
Location: Minnesota
Posts: 4,996
Jon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond reputeJon Stratis has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Andy A. View Post
The current rule set, specifically R46, allows for only one SB type connector pair on the robot, so adapters aren't legal.

It's probably something that one could lobby FIRST for a rule change on, since the wording of the rule strikes me as being something created to eliminate ambiguity on the high current pathways of the robot, and not recognizing some inherent issue with multiple SB type connectors in series.
As a note for those not familiar with the history, prior to 2015, teams were required to use the SB50. The wording of the rule was changed in 2015 to allow other SB connectors, as teams were expressing a desire to use the SB120 on their robots.

I would have sworn there was a question that year about using a 50-120 converter with borrowed batteries, but I searched through the Q&A archive since then and couldn't find one. The closest I could come up with was Q739 in 2016, which was asking something a little different but got the answer:
Quote:
No, additional connectors attached to the battery would be a violation of R36. R36 is an exclusive list of what may be connected between the ROBOT Battery and the Power Distribution Board, as shown in Figure 4-10.
There was also Q254 in 2017, which asked about using a 50-120 converter between the battery and a battery charger, and that was deemed legal.

I agree with your interpretation, that this helps to remove ambiguity. As for safety... I personally don't see a problem with it, but I'm not an expert and wouldn't want to make that ruling. I think the 2017 Q&A helps point towards a pass on safety, although that's for a circuit limited to 6A, which is much less than we routinely see on a robot. But the rules are the rules, and without asking on the Q&A next year to get clarification (or a change to the rule next year), I would have to rule it illegal at my events.

That said, I personally wouldn't want to use such an adapter - I'd rather come prepared to swap the connector out completely. The increased resistance of having both a pair of SB50's and SB120's, along with the increased opportunity for one of them to not be fully connected/come unplugged is enough to make it a no-go. Replacing the connector is a quick enough process if you have a replacement handy.
__________________
LRI: North Star 2012-2016; Lake Superior 2013-2014; MN State Tournament 2013-2014, 2016-2018; Iowa 2017; Northern Lights 2018; Great Northern 2018
Division LRI: Galileo 2016; Tesla 2017; Archimedes 2018
2015: North Star Regional Volunteer of the Year
2016: Lake Superior WFFA
Reply With Quote
  #50   Spotlight this post!  
Unread 05-20-2018, 03:23 PM
Tom469's Avatar
Tom469 Tom469 is offline
Registered User
AKA: Tom Riggs
FRC #5402 (Iron Kings)
Team Role: Mentor
 
Join Date: Dec 2016
Rookie Year: 2015
Location: Walton, IN
Posts: 38
Tom469 is an unknown quantity at this point
Re: 2 AWG Battery Cables

Through out this discussion the common thread is how to over power a couple of milliohms, of resistance. That is so much worry about so little.

Your concern should be about friction, in all of the moving parts. Friction will consume far more power than a couple of milliohms, in a foot of wire. Seriously, there is little more than one foot of wire, in any of the branch circuits.

Once you guys graduate, and if you study electricity, you will find that publications (Nat'l. Elect. Code ) look at power differently. It will be about conduit fill, balanced or unbalance load, distance, amperage draw, and so on. When you spec out a wire pull for a machine pulling say 125 Amps at 100 - 150 feet away, then wire size means something. Your boss won't be happy if you throw away a couple of hundred dollars oversizing the wire, just because.

Every pound of wire, you add to your robot, is another pound of wire you have to make power to carry, and lift, in the end game.

Make sure your wire connections are correct, and tight; And, your mechanical parts work smoothly and easily. Okay I'll get off my soapbox now.
Reply With Quote
  #51   Spotlight this post!  
Unread 05-20-2018, 03:30 PM
mman1506 mman1506 is offline
Reversible bumpers are my trigger
AKA: Marcus Quintilian
FRC #5406 (Celt-X)
Team Role: Mechanical
 
Join Date: Mar 2012
Rookie Year: 2012
Location: Toronto
Posts: 1,504
mman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond reputemman1506 has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Tom469 View Post
Through out this discussion the common thread is how to over power a couple of milliohms, of resistance. That is so much worry about so little.

Your concern should be about friction, in all of the moving parts. Friction will consume far more power than a couple of milliohms, in a foot of wire. Seriously, there is little more than one foot of wire, in any of the branch circuits.

Once you guys graduate, and if you study electricity, you will find that publications (Nat'l. Elect. Code ) look at power differently. It will be about conduit fill, balanced or unbalance load, distance, amperage draw, and so on. When you spec out a wire pull for a machine pulling say 125 Amps at 100 - 150 feet away, then wire size means something. Your boss won't be happy if you throw away a couple of hundred dollars oversizing the wire, just because.

Every pound of wire, you add to your robot, is another pound of wire you have to make power to carry, and lift, in the end game.

Make sure your wire connections are correct, and tight; And, your mechanical parts work smoothly and easily. Okay I'll get off my soapbox now.
I feel like bringing up the electrical code is a little ironic. There whole thing is over sizing wires (for good reason). The loads are very different.

I'm not sure this discussion is about the amount of energy consumed by the additional resistance but about the reduction in performance caused by the voltage drop.
__________________
2012-2015: 865 Warp7 Team Captain
2016/17: Free Agent Mentor
2018-present: 5406 Celt-X
Reply With Quote
  #52   Spotlight this post!  
Unread 05-20-2018, 08:51 PM
Tom469's Avatar
Tom469 Tom469 is offline
Registered User
AKA: Tom Riggs
FRC #5402 (Iron Kings)
Team Role: Mentor
 
Join Date: Dec 2016
Rookie Year: 2015
Location: Walton, IN
Posts: 38
Tom469 is an unknown quantity at this point
Re: 2 AWG Battery Cables

Okay, the wire resistance for 10 gauge wire is 0.001 Ohms. For 12 gauge it is 0.002 Ohms. Twice the resistance, that's a lot or is it.
Amps = Volts / resistance. Sample: 1 V / (1 ohm load + 0.002 ohm for wire) = 0.998003992 amps or a 1.996 mv drop for the 12 ga wire. The 10 ga wire is 0.999 mv per foot. So it all works out to a difference of ~1mv drop per foot.

My argument is a chain too tight will cost more power than the wire difference.
Reply With Quote
  #53   Spotlight this post!  
Unread 05-20-2018, 09:37 PM
asid61's Avatar
asid61 asid61 is offline
Design Simple
AKA: Anand Rajamani
FRC #1072 (Harker Robotics)
Team Role: Mentor
 
Join Date: Jan 2014
Rookie Year: 2013
Location: Cupertino, CA
Posts: 3,016
asid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond reputeasid61 has a reputation beyond repute
Re: 2 AWG Battery Cables

I can't think of a reason why I would purposefully increase friction. Typically I don't try to design things with excess friction, and I teach 1072 not to do the same. There's no reason not to reduce friction and change battery wires, unless changing b attery wires isn't worth it independently; the two are unrelated concepts and need different amounts of attention.
Changing battery wires is more to prevent brownouts due to the drivetrain than anything else; very little else on the robot is usually the source of a problem.
__________________
Team 1072 2017-present
Team 299 2017
Team 115 2013-2016 (student)

2018 Davis Finalists (w/ 6474 and 3880), 2018 Roebling Winners (w/ 3476, 1323, and 1778)

Reply With Quote
  #54   Spotlight this post!  
Unread 05-20-2018, 10:35 PM
Oblarg Oblarg is online now
Registered User
AKA: Eli Barnett
FRC #0449 (The Blair Robot Project)
Team Role: Mentor
 
Join Date: Mar 2009
Rookie Year: 2008
Location: Philadelphia, PA
Posts: 1,892
Oblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond reputeOblarg has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by asid61 View Post
I can't think of a reason why I would purposefully increase friction. Typically I don't try to design things with excess friction, and I teach 1072 not to do the same. There's no reason not to reduce friction and change battery wires, unless changing b attery wires isn't worth it independently; the two are unrelated concepts and need different amounts of attention.
Changing battery wires is more to prevent brownouts due to the drivetrain than anything else; very little else on the robot is usually the source of a problem.
For what it's worth, I'd argue in-code current limiting is far-and-away the best solution for brownout-prevention in modern FRC, especially given how easy it is to implement with the resources currently available to teams (specifically, the Talon SRX).

Bigger battery wires can allow you to use a more-aggressive current limit, but you shouldn't be relying on them alone to prevent brownouts; not when such a simple, reliable solution is currently available.
__________________
"Mmmmm, chain grease and aluminum shavings..."
"The breakfast of champions!"

Member, FRC Team 449: 2007-2010
Drive Mechanics Lead, FRC Team 449: 2009-2010
Alumnus/Technical Mentor, FRC Team 449: 2010-Present
Lead Technical Mentor, FRC Team 4464: 2012-2015
Technical Mentor, FRC Team 5830: 2015-2016


FRC Drivetrain Characterization
Reply With Quote
  #55   Spotlight this post!  
Unread 05-21-2018, 08:33 AM
efoote868 efoote868 is offline
foote stepped in
AKA: E. Foote
FRC #0868
Team Role: Mentor
 
Join Date: Mar 2006
Rookie Year: 2005
Location: Noblesville, IN
Posts: 1,811
efoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond reputeefoote868 has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Tom469 View Post
Through out this discussion the common thread is how to over power a couple of milliohms, of resistance. That is so much worry about so little.
...
Seriously, there is little more than one foot of wire, in any of the branch circuits.
...
Every pound of wire, you add to your robot, is another pound of wire you have to make power to carry, and lift, in the end game.
12 AWG ~ 24 lbs / 1000 ft
10 AWG ~ 38 lbs / 1000 ft
8 AWG ~ 63 lbs / 1000 ft

6 AWG ~ 96 lbs / 1000 ft
4 AWG ~ 153 lbs / 1000 ft
2 AWG ~ 234 lbs / 1000 ft

Suppose your drivetrain is 6 CIMs, the (one-way) wire length from battery to PDB is 18 inches, and (one-way) wire length from PDB to speed controller to motors is 15 inches.

Upgrading your wire from 12 AWG to 8 AWG and 6 AWG to 2 AWG will add just under a pound (.648 lbs to 1.647 lbs), but will increase the voltage your 6 CIMs will see at 40 amps each by about .3 volts.

An extra 72 watts of power for an added 1 pound of wire seems like a pretty easy upgrade.
Reply With Quote
  #56   Spotlight this post!  
Unread 05-22-2018, 09:16 AM
JamesCH95's Avatar
JamesCH95 JamesCH95 is offline
Hardcore Dork
AKA: JCH
FRC #0095 (The Grasshoppers)
Team Role: Engineer
 
Join Date: Dec 2004
Rookie Year: 2001
Location: Enfield, NH
Posts: 2,580
JamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond reputeJamesCH95 has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Tom469 View Post
Okay, the wire resistance for 10 gauge wire is 0.001 Ohms. For 12 gauge it is 0.002 Ohms. Twice the resistance, that's a lot or is it.
Amps = Volts / resistance. Sample: 1 V / (1 ohm load + 0.002 ohm for wire) = 0.998003992 amps or a 1.996 mv drop for the 12 ga wire. The 10 ga wire is 0.999 mv per foot. So it all works out to a difference of ~1mv drop per foot.

My argument is a chain too tight will cost more power than the wire difference.
Need numbers...
__________________
Theory is a nice place, I'd like to go there one day, I hear everything works there.

Maturity is knowing you were an idiot, common sense is trying to not be an idiot, wisdom is knowing that you will still be an idiot.
Reply With Quote
  #57   Spotlight this post!  
Unread 06-01-2018, 08:33 AM
Tom Line's Avatar
Tom Line Tom Line is offline
Don't lay blame. Fix probems.
FRC #1718 (The Fighting Pi)
Team Role: Mentor
 
Join Date: Jan 2007
Rookie Year: 1999
Location: Armada, Michigan
Posts: 3,129
Tom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond reputeTom Line has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by Jon Stratis View Post
The spec sheet for the batteries on AndyMark says 12-15 milliohm. Granted, that's brand new and many of the batteries teams are running are up to 20 or greater. However, at the low end of the spec (which I've seen on new batteries, according to the Battery Beak), that's a drop of 7.2V. A fully charged battery will read out around 12.5V, which means it drops down to 5.3V if you pull 600A through that battery.

I've seen RoboRio logs where the batter voltage drops below 6V before, even on a brand new battery, although only briefly as brownout protections kick in. It's important to remember that we aren't talking about sustained current draw, but rather fairly brief surges as you run into another robot and stall your drive train before traction slips. Those brief surges, however, can be important!

Also, I suggest you look at the datasheet for the main breaker - you can pull 600% of the rated current through it for up to 3 seconds before it'll trip - that's 720A. Likewise, a 40A Snap Action Breaker will allow 300% of rated current for 1 second before tripping, and brief surges of much greater than that.
We use one of the West Mountain Radio CBA / Battery testers to test all our batteries yearly for health. I just went and checked our known good batteries (14 of them) and almost every one of them is checking with a battery beak in the range of 19-23 milliohms.

Anyone else have some actual measurements from their batteries? It only takes a minute to test all your batteries. I'm sure the battery beak isn't testing the way the manufacturers do, but I'd like to believe it isn't off by 25%.
Reply With Quote
  #58   Spotlight this post!  
Unread 06-01-2018, 10:48 AM
seg9585's Avatar
seg9585 seg9585 is offline
Registered User
AKA: Eric
FRC #0612 (Chantilly Robotics)
Team Role: Engineer
 
Join Date: Feb 2006
Rookie Year: 2001
Location: Chantilly, VA (Harris Corp)
Posts: 634
seg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond reputeseg9585 has a reputation beyond repute
Re: 2 AWG Battery Cables

Quote:
Originally Posted by asid61 View Post
I can't think of a reason why I would purposefully increase friction.
Friction is a portion (or in some cases, all of) the D gain in a PID loop. There are several reasons to purposefully increase friction, for example eliminating backdrive after climbing when the motors are disabled (think 2016 and 2013). We have intentionally built friction into components to help regulate their velocity or position control (in particular when closed loop may not have been an option -- eg in a relay circuit).
In 2017 we adjusted friction on belt drives to help eliminate slip when in contact with Fuel. Sometimes simply reducing friction isn't a viable option, you need more power applied from the motor. I would argue thicker wires help with that.
__________________
My FIRST legacy:

Team 204 Student 2001, 2002 (Voorhees, NJ)
Team 1493 College Mentor 2006 - 2008 (Troy, NY)
Team 2150 Intern/Professional Mentor 2007, 2009 (Palos Verdes)
Team 4123 Lead Engineering Mentor 2012 (Bellflower, CA)
Team 4276 Engineering Mentor 2012-Present (Huntington Beach, CA)
Team 612 Engineering Mentor (Chantilly, VA) Present
Reply With Quote
  #59   Spotlight this post!  
Unread 06-02-2018, 06:11 PM
Unsung FIRST Hero
Al Skierkiewicz Al Skierkiewicz is offline
Chief Robot Inspector
AKA: Big Al WFFA 2005
FRC #0111 (WildStang)
Team Role: Engineer
 
Join Date: Jun 2001
Rookie Year: 1996
Location: Wheeling, IL
Posts: 11,110
Al Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond reputeAl Skierkiewicz has a reputation beyond repute
Re: 2 AWG Battery Cables

OK, I think it is time to talk about how manufacturers test their parts and make up the specs, motor curves and discharge curves. The test systems that are used have very large cables so there is very little resistance between battery and load. When a battery is speced at 600 amps, that is with as little resistance as possible and a very accurate load resistance while monitoring the current. Given that test criteria, 600 amps will drop 6.6 volts across the battery internal resistance at 0.011 ohms. The CIM motor is likewise tested with large wire so that when the curve is labeled for 12 volts, that is measured at the motor terminals.

Now for real world robot systems. The load in our robots is not accurately maintained and is very dynamic. Most of the well designed robots, I have been able to investigate, will have a large CIM motor at stall draw between 100 amps and 120 amps if only one motor is running. Typical four motor drives will draw more like 90 amps for each motor. Many robots will introduce significant resistance in the wiring, connectors and wire such that large CIM motors are more likely to be drawing 80 amps maximum with only one motor running. All robot current flows through the primary circuit (the battery wiring, the internal resistance of the battery, the main breaker and the PDP). So lowering the resistance in that path will result in better performance but your mileage will vary. You can't change the breaker, the SB connector or the PDP so that only leaves the wiring. The discussion thus far has shown that #4 wiring would be 0.0008 ohms compared to 0.002 ohms for #6.

For this discussion, a typical robot will have at least .005-.010 ohms if one were to account for series resistance of the main breaker and all connections. You can see that as you total up the resistance, the available voltage at the motor is vastly reduced. Using the CIM motor specs, the internal resistance of a stalled motor is 0.091 ohms. So if we run the calculations on that (with no other load), the battery is only really delivering 275 amps with a four motor drive and #6 wiring. Moving to #4 would make that 282 amps. Knowing that there is a voltage drop across the primary circuit (Battery, wire, breaker, PDP) 275 amps will drop 5.75 in the primary circuit, or will produce 6.25 volts at the output of the PDP. Moving to #4 will make the 6.2 volts rise to 6.4 volts. For a six motor drive, the output of the PDP would be 5 volts for #6 and 5.4 volts for #4. For reference the RoboRio disables output (true brownout) between 4.5 and 6.3 volts at the input to the RoboRio. So using #4 wire could protect brownout (by a whole 0.1 volts) if everything in your system was perfect.
__________________
Good Luck All. Learn something new, everyday!
Al
WB9UVJ
www.wildstang.org
________________________
Knowledge is power. Power UP!
Reply With Quote
Reply


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 05:23 AM.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi