

Common sense goes a long way.  Akash Rastogi [more] 



Thread Tools  Rate Thread  Display Modes 
#16




Re: Curve Driving Generator
Please reread my original message

#17




Re: Curve Driving Generator
Quote:
Quote:

#18




Re: Curve Driving Generator
Quote:
a=(2*y2+2*y1+(m2+m1)*x2+(m2m1)*x1)/(x2^3+3*x1*x2^23*x1^2*x2+x1^3); b=(3*x2*y2+x1*((m2m1)*x23*y2)+(3*x2+3*x1)*y1+(m2+2*m1)*x2^2+(2*m2m1)*x1^2)/(x2^3+3*x1*x2^23*x1^2*x2+x1^3); c=(x1*((2*m2+m1)*x2^26*x2*y2)+6*x1*x2*y1+m1*x2^3+(m22*m1)*x1^2*x2m2*x1^3)/(x2^3+3*x1*x2^23*x1^2*x2+x1^3); d=(x1^2*((m2m1)*x2^23*x2*y2)+x1^3*(y2m2*x2)+(3*x1*x2^2x2^3)*y1+m1*x1*x2^3)/(x2^3+3*x1*x2^23*x1^2*x2+x1^3); ... then you get: a = (m_{2}X_{2}  2Y_{2})/X_{2}^{3} b = (3Y_{2}  m_{2}X_{2})/X_{2}^{2} c = 0 d = 0 ... and since c=0 and d=0, the cubic Y = aX^{3} + bX^{2} + cX + d is reduced to: Y = aX^{3} + bX^{2} Quote:
Last edited by Ether : 03312012 at 01:08 AM. 
#19




Re: Curve Driving Generator
The polynomial idea works..... theoretically... However, from experience does this solution fit if we used 2nd degree polynomials instead of cubic? Also, for this type of problem is it easier to do matrix math instead of algebra?

#20




Re: Curve Driving Generator
Quote:
A 2^{nd} degree polynomial has only 3 adjustable parameters, and there are 4 equations to be satisfied: Y_{1} = f(X_{1}) Y_{2} = f(X_{2}) Tangent1 = f'(X_{1}) Tangent2 = f'(X_{2}) 
#21




Re: Curve Driving Generator
The real problem you have is one of reference frame. The curve it self is not important as it represents some path on the playing field frame of reference. The incremental control of the robot is based on its frame of reference to the center of the robot for example.
This is a common problem for aircraft, satellites and just about any navigation problem. The solution is to use a series of translations and rotations. The best way to do that is with quaternions as they do the rotation without ambiquity. http://en.wikipedia.org/wiki/Quatern...atial_rotation has a good primer on the subject. This is commonly used for computer graphics and simulations. Have fun 
#22




Re: Curve Driving Generator
This is not a 3D problem. It's a problem in a 2D flat plane, and a skidsteer vehicle has only 2 degrees of freedom (rotation and fwd/reverse translation) in that plane. To execute a smooth* path from an arbitrary point A (starting with heading angle Alpha) to point B (ending with heading angle Beta) the vehicle's instantaneous translation and/or rotation rates must continuously change over time in order to follow that path and arrive at the destination with the proper heading. So the problem is: 1) given the starting and ending points and headings, what criteria are to be used to define the desired path? smoothest* curve? Shortest distance* ? Shortest time? radius of curvature* never less than some specified minimum value? 2) how to compute the curve defined by those specifications 3) how to use the curve to determine the required instantaneous vehicle rotation and translation at any point along the curve 4) how to use the answer to #3 to determine the left and right wheel speeds (for skid steer) at each point along the curve 5) is the path to be computed once (at the start) and then executed to completion without feedback, or is the path periodically recomputed to minimize accumulated drift errors For a subset of the possible starting and ending points and headings, it is possible, as explained in earlier posts in this thread, to compute a cubic polynomial which defines a smooth path. For a given vehicle forward speed, this polynomial can be used to determine the required instantaneous vehicle rotation rate at each point along the path. In another earlier post, dbeckwith suggested a Bezier curve. I believe the instantaneous vehicle rotation rate for a given vehicle forward speed can also be computed from the parametric Bezier equations, but I haven't actually done it yet. The bottom line here is that the OP stated a problem without much context and asked that the discussion be limited to "how" and not "why". It makes for an interesting academic discussion, but I suspect that if we had greater insight into what was trying to be accomplished the solution might be different. *notes: smooth path: perhaps for esthetic reasons? the OP did not specify why shortest distance: rotateinplace at point A, drive straight to point B, rotateinplace. probably not what the OP would consider a "smooth" curve limited minimum radius of curvature: many skidsteer vehicles don't like a small turning radius. they hop and jerk. Last edited by Ether : 03312012 at 10:11 PM. 
#23




Re: Curve Driving Generator
Quote:
The reason for this problem is in aiding the drive in autonomous and teleop  more so autonomous. Also, this is just an exercise for the future programmers of our team. I had noticed that although the rotate in place is the "shortest distance" method it is not always the fastest  especially for a very smooth control  as that the robot must slow down, rotate, and then speed back up. While if the robot drove in a curve it would never need to stop, only change wheel speeds. So then, I'm looking for the fastest route possible. (The reason I did not want to discuss why is because most times I post a thread there always seems to be a discussion as to why not or why and completely turn away from the answer I wanted. I apologize for not being more specific). I am planning on integrating this with distance PID loops to control the drive. Essentially this is an addon to a drive system I am creating that pulls from a list of coordinates that I want to go to, sets the left and right wheel distances that the robot must travel to get to that point, and then feeds those distances into a PID loop. Once the error in the pid loop reaches around 05% it then pulls the next coordinate to go to. I also, figured that a coordinate system relative to the robots current position would be more beneficial than a coordinate system that is fixed for what I am trying to do. The equations that the robot uses to determine left and right distances use the arc length of the path, and the angle through which the robot will turn while it is driving along that path. If the angle is 0 then it drives in a straight line, if the distance is 0 then it rotates in place. The equations are thus: double rightDistance = ((wheelWidth*angle) + (2*distance))/2; double leftDistance = ((2*distance)  (wheelWidth*angle))/2; The advantage of this is that I only need one set of equations to drive curves, or perform the traditional rotate and drive. I am also planning on working with trapezoidal motion profiling in this. I am using these equations: x = x0 +dx(P(u)); P(u) = 2u^3+3u^2; u = currentTime  startTime/delta_time; Where x is the distance travelled in 1 dimension and dx is delta_x and x0 is the startingX > which is normally 0. P(u) is a function with these properties: f(0)=0, f'(0) =0; f(1)=1, f'(1)=0 and P(u)=[0,1] and u=[0,1]. There is a second set of equations I plan on replacing the above with that include max acceleration and max velocity, I just haven't yet because I'm not sure how to go about testing for those due to a very very small workspace  and running the robot on blocks is inaccurate for our heavy bot. Last edited by theNerd : 04012012 at 02:49 PM. 
#24




Re: Curve Driving Generator
254 has something like this build into their drive code, though as I said before, I believe it also integrates the current speed of the robot(faster speed, bigger arc, slower speed, smaller arc). I would check their code, as they have made it public, and it is very refined.

#25




Re: Curve Driving Generator
Is this for teleop or autonmous?
In autonmous, getting a robot to drive an accurate curve is fairly early. Have a PID loop for distance connected to each side of your drive train, and another PID loop based on a desired angle and the gyro that is added into to your final drivetrain output values. The robot will then drive curves to reach the endpoints, assuming gains are set correctly. 
#26




Re: Curve Driving Generator
Food for thought See attached graph. There's a Segway with a 2foot wheelbase sitting at the origin. Its heading is aligned with the +X axis. I drive the Segway so that the center of its axle follows the black Bezier curve. At the end of the path, the Segway's heading is parallel to the X axis and its coordinates are x=10 y=3. The red curve shows the track of its left wheel, and the green curve shows the track of its right wheel. The red, black, and green curves all have the SAME LENGTH (~10.6807 feet), but they are three DIFFERENT SHAPES. If I were to command the left and right sides of a skidsteer vehicle to each travel exactly 10.6807 feet, the chances that the vehicle would follow the black curve are pretty slim. In fact, if the left and right sides were controlled identically and perfectly, it would travel in a straight line and end up on the X axis with coordinates x=10 y=0. 
#27




Re: Curve Driving Generator
Wow. All I have to say is Ether = Genius.
I'll email my programmers this thread, since it will put them to good use for the next 9 months or so. 
#28




Re: Curve Driving Generator
Quote:
This is all really cool by the way, I'd love to try to implement this in our robot, even if it isn't entirely practical or needed, just because it's such an interesting problem. Another layer of complexity to add with our robot though is that we use Mecanum drive, so basically we could have the robot drive along the curve with the X and Y coordinates being affected by forward and strafing motion, and the heading just constantly changing by itself from the first tangent to the last. I think that actually brings up another problem though, which I've been wondering about for a while: how do you get a robot with Mecanum drive to drive completely straight while turning at a constant rate (as in, the overall motion of the robot is in a straight line, but it is constantly rotating)? This might be going way beyond what the OP was looking for, but it was just something I was thinking about since we have Mecanums. 
#29




Re: Curve Driving Generator
Quote:
In actual practice, it doesn't work perfectly, because of sensor accuracy and mechanical imperfections (pesky friction and free play etc), but with a welldesigned robot built with fine craftsmanship, you can get pretty close. ^{1}The equations to do this can be found here; or you can use the gyro input to the mecanum drive provided in WPILib Last edited by Ether : 04022012 at 09:40 AM. Reason: added footnote with link 
#30




Re: Curve Driving Generator
Quote:
Also, I noticed with the 3rd degree polynomial solution I can not compute a curve for a pi/2 rotation for the robot at the destination point. How would I go about working with bezier curves as I have never worked with them in my life . 
Thread Tools  
Display Modes  Rate This Thread 

