|
|
|
![]() |
|
|||||||
|
||||||||
![]() |
|
|
Thread Tools | Rate Thread | Display Modes |
|
|
|
#1
|
||||
|
||||
|
Impact and Capability of Motor Brakes?
Greetings!
We have been to two regionals and have seen several teams using brakes for balancing on the bridge. Most we've seen are done at a transmission level or use pneumatic cylinders to physically "poke" the wheels. We have decided that we want to implement brakes on our robot for balancing purposes only. We are weighing two options: 1. Pneumatic Brakes- A cylinder that mechanically stops the wheel (Still in R&D. Not my sub-teamWe've considered the potential heat, power draws, and strain on the motors. We also know about coast/brake mode on the Jaguars. What we want to know is how many times per second the output of a Jag is capable of switching safely. Does anybody have experience with this? Thanks! |
|
#2
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
Quote:
|
|
#3
|
|||
|
|||
|
Re: Impact and Capability of Motor Brakes?
We had a auto balance button for our robot at lone star. It gave the drive motors 20 percent power and stuck to the bridge even at a angle. I didn't see anything go wrong with the motors or jaguars.
|
|
#4
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
Quote:
.Quote:
.Thanks! |
|
#5
|
|||||
|
|||||
|
Re: Impact and Capability of Motor Brakes?
It might depend a lot on how fast you cycled the power, and whether the bridge was on an angle or not. If the bridge is at an angle, you need more power and less time on the down direction than the up direction.
Personally, I'd go with a pneumatic brake. If the bridge isn't balanced when the power cuts off, the power control brakes aren't going to work very well. OTOH, a properly plumbed pneumatic brake will stay exactly where it is supposed to be when the power to the solenoid is cut. |
|
#6
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
We were wondering what reasoning you have to back up / what reasoning led you to that assumption. The ability to metacognate can be quite helpful, both on the engineering design level and to communicate with others. While it's possible you picked something completely at random, I would hope otherwise.
Regarding brakes, you have the right idea that you want something that will impede movement. The best design will also likely continue to function after power the robot has been disabled, if nothing else because it's possible to get coop points even with a tilted bridge that way. More generally, if your mechanism doesn't require continual power draw, you will reduce "heat, power draws, and strain on the motors." This can be done with pneumatics, which are often the most straight forward in these situations, but a well-designed locking mechanism driven by a motor can have the same effect. Team 25 has done this in a couple of different games, I believe. *this one solution out of a great many. think about other locking mechanisms you've seen. one that readily comes to mind for me is collapsible tables |
|
#7
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
If you have the weight for it, mechanical brakes will work wonders. It seems like pneumatics are the most popular, but motor driven brakes are possible. On our bot, we literally have COTS bicycle brakes on our center wheels. The cable from the brakes get wound onto a drum driven by a window motor, so they breaks stay where they are when power is cut because window motors are difficult to backdrive. For your situation, I would recommend pneumatic brakes, if you can package them/afford the weight.
|
|
#8
|
|||
|
|||
|
Re: Impact and Capability of Motor Brakes?
We use an encoder-based proportional loop (motor control) for our brake and it has worked perfectly for both bridge balancing and defense. If you have encoders on your drivetrain, I would reccomend trying this before implementing a mechanical brake.
|
|
#9
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
Okay. There was a miscommunication on my end. Oops.
We were planning on doing the pneumatic brakes anyways, and thanks to your opinions we are now strongly in favor of them. We want the electric brakes in addition to the hard stop so our drivers have a little more flexibility while balancing. Quote:
Quote:
So does anybody have input on the switching capacity of the Jaguars, just for kicks ? |
|
#10
|
|||||
|
|||||
|
Re: Impact and Capability of Motor Brakes?
Argon,
The electric brake that you mention is a very capable system that requires some feedback and fine tuning in software to work reliably. We have only used it once or twice as I remember. It also eats electricity when not done properly so it is possible to trip breakers. It took our software guys a lot of reading before they used it. |
|
#11
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
Quote:
Thank You |
|
#12
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
One easy thing to make sure of as well is that your Jaguars are in brake mode rather than coast. This won't keep your robot from rolling down the bridge if it's tilted, but it may help your robot from rolling around so much when the bridge is coming up to level. Basically it will resist uncommanded motor movement somewhat (especially short-duration disturbances), but not prevent it.
|
|
#13
|
||||
|
||||
|
Re: Impact and Capability of Motor Brakes?
Quote:
|
![]() |
| Thread Tools | |
| Display Modes | Rate This Thread |
|
|