Go to Post FIRST is our Hunger Games. May the odds be ever in your favor. - GeorgeM [more]
Home
Go Back   Chief Delphi > Other > Math and Science
CD-Media   CD-Spy  
portal register members calendar search Today's Posts Mark Forums Read FAQ rules

 
Reply
 
Thread Tools Rate Thread Display Modes
  #1   Spotlight this post!  
Unread 20-06-2016, 17:34
Aren Siekmeier's Avatar
Aren Siekmeier Aren Siekmeier is offline
on walkabout
FRC #2175 (The Fighting Calculators)
Team Role: Mentor
 
Join Date: Apr 2008
Rookie Year: 2008
Location: 대한민국
Posts: 735
Aren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond reputeAren Siekmeier has a reputation beyond repute
Re: Statistics/Probability Quiz

Quote:
Originally Posted by Ether View Post



If a fair die is thrown 420 times, what's the probability of getting exactly 70 of each number (1 thru 6)?



Here's a crack at it before reading responses

Spoiler for Answer:

tl;dr final answer:

420! / (70!^6 * 6^420)
or about
6.04e-7

A little rusty on my abstract algebra but here goes.

The odds of 70 ones followed by 70 twos followed by .... followed by 70 sixes is:
(1/6)^420

There are 420! permutations of this, i.e. the order of the symmetric group of order 420. However, some of these permutations don't matter. The symmetric group is generated by individual swaps, one pair at a time. Swapping two ones isn't actually another permutation (ones are indistinguishable), and so on with twos, threes, ... These irrelevant swaps generate six distinct symmetric groups of order 70 within the larger S_420. Their direct sum is isomorphic to all elements in S_420 generated by the irrelevant swaps. Call this subgroup T<S_420. Then the right cosets of T in S_420 are the equivalence classes of indistinguishable permutations, and we need to count these. This is the index of T in S_420, which is the quotient of their orders: 420! / (70!)^6

Then multiply this by the probability for the ordered case, final result:

420! / (70!^6 * 6^420)

Stirling's approximation on the factorials cancels lots of stuff and we get:

sqrt( 6 / (140*pi) ^ (5) ) ~ 0.000000604 (6.04e-7)

For an n sided die rolled n*k times, this becomes:

(nk)! / (k!^n * n^(nk)) ~ sqrt( n / (2*pi*k)^(n-1) )



Edit: euhlmann method for me

Last edited by Aren Siekmeier : 20-06-2016 at 17:54. Reason: n*k not 420 in general sol'n...
Reply With Quote
Reply


Thread Tools
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT -5. The time now is 07:48.

The Chief Delphi Forums are sponsored by Innovation First International, Inc.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright © Chief Delphi