--------------------------------------------------------------------------- ClientError Traceback (most recent call last) <ipython-input-1-5a565b55ff83> in <module>() 27 # Change this bucket if you want to train with your own data. The WPILib bucket contains thousands of high quality labeled images. 28 # s3://wpilib ---> 29 estimator.fit("s3://redstorm509") ~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/sagemaker/estimator.py in fit(self, inputs, wait, logs, job_name, experiment_config) 459 self._prepare_for_training(job_name=job_name) 460 --> 461 self.latest_training_job = _TrainingJob.start_new(self, inputs, experiment_config) 462 self.jobs.append(self.latest_training_job) 463 if wait: ~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/sagemaker/estimator.py in start_new(cls, estimator, inputs, experiment_config) 1011 train_args["enable_sagemaker_metrics"] = estimator.enable_sagemaker_metrics 1012 -> 1013 estimator.sagemaker_session.train(**train_args) 1014 1015 return cls(estimator.sagemaker_session, estimator._current_job_name) ~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/sagemaker/session.py in train(self, input_mode, input_config, role, job_name, output_config, resource_config, vpc_config, hyperparameters, stop_condition, tags, metric_definitions, enable_network_isolation, image, algorithm_arn, encrypt_inter_container_traffic, train_use_spot_instances, checkpoint_s3_uri, checkpoint_local_path, experiment_config, debugger_rule_configs, debugger_hook_config, tensorboard_output_config, enable_sagemaker_metrics) 527 LOGGER.info("Creating training-job with name: %s", job_name) 528 LOGGER.debug("train request: %s", json.dumps(train_request, indent=4)) --> 529 self.sagemaker_client.create_training_job(**train_request) 530 531 def process( ~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/botocore/client.py in _api_call(self, *args, **kwargs) 355 "%s() only accepts keyword arguments." % py_operation_name) 356 # The "self" in this scope is referring to the BaseClient. --> 357 return self._make_api_call(operation_name, kwargs) 358 359 _api_call.__name__ = str(py_operation_name) ~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/botocore/client.py in _make_api_call(self, operation_name, api_params) 659 error_code = parsed_response.get("Error", {}).get("Code") 660 error_class = self.exceptions.from_code(error_code) --> 661 raise error_class(parsed_response, operation_name) 662 else: 663 return parsed_response ClientError: An error occurred (AccessDeniedException) when calling the CreateTrainingJob operation: User: arn:aws:sts::215031180259:assumed-role/AmazonSageMaker-ExecutionRole-20200120T195765/SageMaker is not authorized to perform: sagemaker:CreateTrainingJob on resource: arn:aws:sagemaker:us-east-1:215031180259:training-job/wpi-cpu-2020-01-21-01-12-27-274 with an explicit deny
I’m trying to start the training for machine learning on the AWS SageMaker and I’m getting this error, and I am honestly unsure what to do. I’ve tried using my own bucket and the WPILib bucket