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1 Introduction

The problem of shooting a ball into a vertical target
hole is examined for the 2006 FIRST robotics compe-
tition. The analyses which follow use the ideal projec-
tile approximations without taking into account any
drag or lift effects associated with interactions be-
tween the ball and the air. The results will hopefully
be useful for game strategy, and for design require-
ments.

2 Coordinate System

For the following analyses of shooting a ball through
a vertical target hole, the +X direction is defined
as pointing along the direction of the sidelines, into
the playing court, and the +Z direction is defined
as upward from the ground. The +Y direction is
that to complete an XY Z right-handed coordinate
system. The origin is defined as the projection of
the center of the target hole on the ground below.
Furthermore, in some calculations it is convenient to
combine X and Y into a horizontal radial direction
denoted as the R direction.

3 Ideal Kinematics

In the ideal world without drag due to air resistance,
and with a constant gravitational force, horizontal
acceleration is 0 and vertical acceleration is constant
at —g. After integrating twice,

vz/adt , d:/vdt

(1)

one obtains

dr = d'ro + Urot (2)

Vy = Uz + Aol (3)
1

dz == dzo + Uzot + 501202‘:2 (4)

where the subscripts r and z indicate motion along
the horizontal and vertical directions, respectively.
For the following, we wish to calculate the kinematics
of the motion corresponding to a launch angle 6 with
respect to the horizon. Suppose further that we are
faced with the following boundary conditions:

do = 0

Vro = v, cos(f)

Vo = Upsin(f)

Uz = —g (5)

Then (2) leads to:

d, = v, cos(0)ty

(6)
and (4) leads to:

1

9 ti% —vosin(@)ts + (d, — dzp) =0 (7)

both at ¢t = ¢, which together indicate when the ball
arrives at the target. Solving for ¢;:

vo sin(0) £ /v, sin?(6) — 2g(d — dzo)
g

ty = (8)

Note that there are 2 solutions associated with the
parabolic path of the ball passing through the height



of d,. The first solution is associated with a rising
ball, while the second with a falling one. For a given
launch angle 6, the discriminant under the radical
helps identify the separation in time between the ris-
ing and falling portions of the parabolic path. So
driving the discriminant to 0 by choosing 6 ~ 22.4°,
would cause the vertex of the parabolic path to be at
the desired height d.. Note that since 6 is the only
variable determining ¢, one would not have the lib-
erty of driving both the vertex of the parabolic path
to height d,, and choosing the horizontal range d,.

4 Shooting Range

The maximum range can be found by searching for
an extreme point in the graph of d, versus 0. This
can be done by taking the first derivative and setting

to 0:
drmaz = {d| d(d,)/d0 = 0} 9)

Abbreviating the radical and its discriminant in (8)
as:

NERVA S sin?(0) — 29(d, — d.,) (10)

and cos(f) and sin(#) as cf and sf, the maximization
relationship becomes

v,cl v,250ch

0=4d(d,)/do (voch + )

V,50

(Vos8 £ /) (11)

which reduces to

2
cB(voch + Yo 8909) = 50(vos0 = /) (12)
06?0,/ £ 0,500 = 1,570,/ £ 56, /2 (13)
:l:sﬂ\/2 + v, (%6 — 029)\/ Fu,2s0c20 =0 (14)
In order for further simplify this, the term is

treated as if it is a variable in a quadratic equation:

—0o(820 — ¢?0) £ \/v,2(520 — ¢20)? + 4v,2520c20

V= 1250

(15)

Substituting from (10):
1259\/002829 —2¢g(d,

- dzo)

16
—0o(820 — ?0) £ \/v,2(s20 — c20)% + 41}0282002(0 )
Squaring both sides results in:

4520(v,%5%0 — 2g(d, —
vo2(5%0 — c20)? (17)

F20,(520 — c20)1/v,2(520 — c20)2 + 4v,2520c20

+0,2(520 — ¢?0)? + 4v,25%0c*0

Combining terms on the RHS, moving some to the

LHS, and simplifying the expression under the radical
gives:

dzo))

20,2 (540 — c*0) — 8¢g(d. — d.,)s?0

F20,2(s%0 — c20)
This further simplifies to:
20,2 (0 — *0)(1 £ 1) — 8g(d. — d.,)s*0 =0 (19)
A trivial solution of § = 0 is obtained when the (—)
option of the + is used, and for the (4) option, the
expression to solve becomes:
0,2 (%0 — ¢*0) — 2g(d, — (20)

Note that for the special case of d, = d,, the result
is s = +£cf, which leads to the well-known solution
0 = 45° within the constraint 0 < 6 < 90°.

The following example obtains the maximum range
of an ideal 2006 FIRST competition ball, assuming
that it is launched from the top of a 5 ft tall launcher:

do =51t
d, =8.5 1t (21)
Vo = (12 m/s)/(0.3048 m/ft) ~ 39.37 {t/s
g = 3217 ft/s?
Solving (20) numerically results in the following
maximum horizontal range result:

(18)
(520 + ¢20)?

d.,)s*0 =0

0 =~ 47.25°
ty ~ 1.667s (22)
dr =~ 44.54 ft
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Figure 1: Shown is the line of maximum shooting
range on the court.

Since the width of the court is 26 ft, i.e. distance
between sidelines and the centerline is 13 ft, when
the robot is against the side of the court, (assuming
a point robot), using the Pythagorean theorem, the
furthest the robot can be along the length of the court
is

V/(44.54 ££)2 — (13 ft)2 ~ 42.61 ft (23)

The arc that represents the maximum range of the
launcher is drawn using a dashed curve in Figure 1.

5 Launch Angle: 0 = f(d,,v,)

Another practical question is, assuming the launch
speed is fixed, given the distance to the target, what
should the launch angle # be? Combining (6) and
(7), one obtains

. (%%Ts(e))?_”o sin(0) (%%Tsw)y(dz—dw) =0
(24)

gdr2

502 d,- sin() cos(0) + (d,

—d,)cos*(f) =0 (25)

Ifd. =0,v, =0, or (d, —d;,) =0, then 6 can be
obtained analytically. Otherwise, the solution § must
be obtained numerically.

Note that there are 2 solutions for #. However
this time the quadratic variable is not time, it is the
launch angle. Therefore, the lower one is associated
with the shallower launch angle, while the upper one
with the steeper one. An example pair of parabolic
paths is illustrated in Figure 2.

The problem of # as a function of d,- has been solved
and plotted in Figure 3. First, note that the lower
curve starts high, reaches its minimum at 6 =~ 22.4°
(when the discriminant in (8) vanishes), and increases
again. Physically since the height of the target is
higher than that of the launcher, when the robot is
very close to the target, it is aiming upward. Then
as it moves away its aim lowers until the target is at
the vertex of the parabolic path of the ball. Then the
launch angle has to increase again. Note that for all
of these there is a corresponding parabolic path which
starts at a greater launch angle. These are shown by
the upper curve. As the robot moves further away
from the target, these two curves converge until they
meet at 0 = 47.25° which defines the maximum hor-
izontal range of d, ~ 44.54 ft, past which there is no
solution.

6 The Rise and Fall

In order to maximize scoring in a fixed period of time,
the ball should be delivered to the target as quickly
as possible. Furthermore, if the air resistance is taken
into account, then the ball is faster in the horizontal
direction during the rise than during the fall. This
would lead us to believe that the angle that the path
of the ball makes with the vertical target is more per-
pendicular when rising than when falling. Therefore,
the cross-section of the target’s hole is larger during
the rise, making it an easier target. For these reasons
it’s more prudent to score with a rising ball whenever
possible.
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Figure 2: Shown are the lower and upper parabolic
paths for a single horizontal range value to the target.
Note that in both cases, the initial launch speed v,
is the same.
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Figure 3: Shown are the lower and upper solutions for

the launch angle  as a function of horizontal distance
dy.

7 Clearance

As the ball is approaching the target hole, the size
of the aperture experienced by the ball is different
depending on the approach angle of the ball. Let us
denote the entry plane as the plane perpendicular to
the ball’s motion as it enters the target hole. Then
the clearance AD, is the smallest gap between oppo-
site edges of the hoop of diameter Dy, and the ball of
diameter Dy, projected onto the entry plane, as the
ball enters it. This is calculated as:

AD = Dy, cos(¢) — Dy (26)

where ¢ is the angle between the entry plane and the
plane of the target’s backboard. In order to compute
¢, consider its horizontal component ¢,

¢r = atan(py/pz) (27)

where p, and p, are the components of the robot’s
position on the field, according to the coordinate sys-
tem convention introduced in Section 2. The vertical
component ¢, is:

(bz = atan(vz/vr)t:tf (28)
From (3), (5), and (8),
¢, = atan((vso — g tf)/vro)
= atan((vosin() — g tf)/v, cos(6)) (29)

\/002 sin?(0) — 2¢g(d. — d.,)
v, cos(6)

Fatan

Since the desired result is cos(¢), it is not necessary
to solve for ¢ since its cosine is easier to obtain. One
approach would be to take a unit vector e, (pointing
out from the target’s backboard), and rotate it about
the Z-axis by ¢,, and then about the Y-axis by ¢,,
and measure the resulting component along the X
direction:

cos(p) = e, Ry(¢.) R.(dr) ex (30)
where
cos(¢p,) 0 sin(¢,)
Ry(¢:) = 0 ! 0 (31)

—sin(¢:) 0 cos(¢.)
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Figure 4: Shown are the clearances of the target’s
hole as the ball enters as a function of the robot’s
position on the floor.

cos(¢,) —sin(¢p.) 0
R.(¢r) = sin(¢,) cos(¢r) O (32)
0 0 1
Therefore, (30) becomes:
cos(¢) = cos(¢py) cos(¢) (33)

and this result is regardless of which rotation is per-
formed first. Substituting

D, =
D, =

30in = 2.5 ft
7in ~ 0.583 ft

into (26), (33), (27), (30), and using the data plotted
in Figure 3, the relationship between shooting clear-
ance and the robot’s position (p,p,) on the floor is
obtained. This is shown in Figures 4-5. Note that for
the case of (p, = 27 ft,p, = 13 ft), i.e. the middle
starting location of the autonomy round, the clear-
ance is AD = 19.1 inches, which is only slightly less
than the maximum possible 23 inches.

This data can then be used in conjunction with
empirical repeatibility results from the launcher to
obtain success probabilities versus the robot’s posi-
tion.
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Figure 5: Shown are the contours of {0,7,14,21} ft
(alternatively, {0, 1, 2, 3} ball-diameter) clearances as
a function of the robot’s position on the floor.

8 Conclusions

This report has examined the problem of shooting a
ball into a vertical target hole, using ideal kinematic
equations. A number of interesting results have been
obtained: First, given the parameters of the problem,
the minimum launch angle 8 for any configuration is
~ 22.4°. Second, the maximum horizontal range of
the launcher is ~ 44.54 ft. Third, the clearance be-
tween the target hole and the ball projected onto the
entry plane is examined. This survey indicates that
shooting from the corners of the court (say within 10
ft, from the one point goals) is not prudent. Further-
more, it sheds light into the feasibility of launching
multiple simultaneous balls. Finally, during the au-
tonomy round, if shooting from the starting position
without moving at all, i.e. (p, = 27,p, = 13) ft,
the clearance is quite good (& 19.1 inches ~ 2.7 ball-
diameters), and the time in flight is ~ 0.85 seconds.



