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Introduction 
The motivation for this book comes from my own experience as an FRC mentor.  At work I 
am (or at least pretend to be) a generally competent LabVIEW programmer.  I’ve done some 
pretty cool stuff, like programming a robotic microscope that can automatically inspect a big 
sheet of glass:  big enough to hold eight 32” flat panel TV screens.  My first encounter with 
FRC LabVIEW, however, transformed me into a gibbering idiot.  There is an elaborate but 
mysterious framework that runs the robot, and the main source of documentation seems to be 
the forum archives at Chief Delphi.  The experts who regularly contribute there are great, but 
as I was madly trying to learn, and at the same time teach our team members, I found myself 
constantly wishing for a book that explained everything in one place.  Hopefully, this is that 
book. 

The intention here is that you can read the entire book, or only the parts that interest you.  
You can use it as a classroom text, or as a reference manual.  Chapter 1 covers the basic prin-
ciples of programming in LabVIEW.  It is written under the assumption that you have al-
ready done at least some programming in a “traditional”, text-based language, although if 
you haven’t you should still be fine.  Chapter 2 covers state machines, which are essential for 
programming robots.  Chapter 3 introduces LabVIEW projects, which is how you manage all 
the code for your robot, and Chapter 4 covers the specific project that is the FRC Robot 
Framework.  This chapter is where most of the secrets are revealed. Chapter 5 covers the var-
ious input and output devices, such as motors and sensors, you can attach to and control with 
your robot.  Chapters 6 and 7 cover PID control and image processing.  They contain much 
that can be done without a robot, and so can be covered in the pre-season, in spite of appear-
ing later in the book. Finally Chapter 8 covers the Dashboard, which is simple to use, but 
complicated to understand. 

This book includes, as a companion volume, a zip file of images for use with Chapter 7.   

Although this book contains many example programs, you won’t find a companion zip file 
for them.  It takes practice to learn how to write compact, readable LabVIEW code, practice 
you will get by diagramming the examples yourself. 

As you read this book and compare it to the actual software, please be aware that we are aim-
ing at a moving target.  A new version of the FRC robot framework is issued every year, and 
every year there are improvements and enhancements.  You can pretty much be guaranteed 
that if you are building a robot in year �, this book was updated against a version of the 
framework from the year � − 1.  (Or � − 2. Or worse.)  Be flexible. 

Finally, a note of thanks to both Worcester Polytechnic Institute and National Instruments.  
The FRC robot framework is a product of the robotics program at WPI, and is a large, com-
plex, and amazingly robust piece of software.  Without it, FRC would be way more work and 
way less fun.  Equally amazing is the support that NI provides to FRC, as is the amount of 
time an effort their staff contribute on Chief Delphi and at competitions.  I owe a particular 
debt to Greg McKaskle, whose white paper on vision targeting for the 2012 competition in-
spired much of Chapter 7. 
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Chapter 1 — Elements of LabVIEW Programming 
This chapter is designed to get you up and running with LabVIEW as quickly as possible.  It 
is probably a terrible way to actually learn LabVIEW.  For that, I would recommend “Lab-
VIEW for Everyone” by Jeffrey Travis and Jim Kring (Prentiss Hall, New York, 2006).  It is 
a very complete book.  It also thick enough to stun an ox. 

You should read this chapter with your computer on and LabVIEW open.  And you should 
actually program all the examples for yourself.  LabVIEW is an “experimental” program-
ming language in the sense that you will learn by doing experiments to see what happens.  If 
you take a “reading only” approach, you will never really learn, and that will be very frustrat-
ing. 

The Elements 

All programming languages share a set of common elements.  If you have written programs 
in a text-based language (e.g., C and friends, Java, FORTRAN, BASIC, Python…), then you 
will be at least vaguely familiar with these elements.  I’ll give them a quick listing, and then 
revisit each one to show how it appears in LabVIEW.  If you know all this already, then just 
jump ahead to the LabVIEW part. 

1.  Variables  These are objects in which you can store data.  They might hold a single num-
ber, or an array of numbers, or a string of text.  Boolean variables can be either True or False. 

2.  Expressions  These are the operations that manipulate the values stored in variables, as in 
A + B. 

3.  Assignments  This is how you get values into variables.  For example, you might assign a 
variable to have constant value, as in PI = 3.1415.  Or you might use an expression to give a 
variable a value based on other variables, as in C = A + B.  

4.  Conditionals  Also called branching statements. The simplest conditional allows one piece 
of code to execute if an expression evaluates to True, and a different piece to execute if the 
expression evaluates to False. 

5.  Flow Control  This is the term generally applied to sections of code that repeat for a set 
number of times, or repeat until some condition is true.  Strictly speaking, conditionals also 
control the flow of a program, so the distinction between them and flow control elements is a 
bit arbitrary. 

6.  Subroutines  These are any pieces of code that can be packaged and used in some other 
piece of code.  They go by lots of other names: function, procedure, or subprogram. 

We’ll stop the list here, and point out that you are not even a single page into this book and 
have already encountered its first lie.  (Note the clever implication that there will be more lies 
to come.)  I said at the start that all programming languages share a common set of elements, 
but that is not true.  In a text-based program, an assignment, or a print command, or a com-
mand to write to a file, all go by the generic term statement.  LabVIEW doesn’t have state-
ments.  It is an entirely different kind of beast. 
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LabVIEW Programs 

Before we revisit the list of elements, it is necessary to spend a moment on the structure of 
LabVIEW (LV for short) programs.  In a text-based language, a (simple) program is just a 
single object:  a text file.  In LV, a program is two objects:  a front panel which handles in-
puts and shows you the results, and a block diagram which contains the actual code.  If you 
want, you can think of the front panel as the body and controls of a car:  it’s got the fancy 
paint job, the headlights, turn signals, steering wheel, and pedals.  The block diagram is the 
engine that makes it go. 

When you start LabVIEW (do it now) you get a window that looks something like Fig. 1.1.  
If it doesn’t say “FRC” somewhere on this screen, you haven’t installed everything that you 
need, and won’t be able to follow much of this book.   

 

FIGURE 1.1 The LabVIEW Getting Started window. 

Click on “Blank VI”, and you will get a pair of windows, like Fig 1.2.  The windows are 
conveniently labeled so you can see right away which one is the front panel and which one is 
the diagram.  You will need to toggle back and forth between these two windows a lot.  The 
easiest/fastest way to make this swap is with the ctrl-E key combination. 

 

FIGURE 1.2  A new VI (LabVIEW program) showing the front panel 
(foreground) and block diagram (background). 
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To make this more concrete, Fig. 1.3 shows the front panel of a simple program (which has 
been run once to draw the data on the graph), and Fig. 1.4 shows the diagram that makes it 
work. 

In LV, a program is officially called a VI, which is short for Virtual Instrument.  I will use 
the terms “VI” and “program” interchangeably.  Although the program in Figs. 1.3 and 1.4 
doesn’t do much, there is a lot of new “LabVIEW-ey” stuff going on.  I promise that you will 
soon understand it all.  But in order to do that, we need to get back to the list. 

 

FIGURE 1.3  The front panel of a LabVIEW program.  This program has been run.  Other-
wise, the graph would be blank. 

 

FIGURE 1.4  The block diagram of the program in Fig. 1.3. 
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Back to the List 

Variables   

Just as the programs have two parts, variables in LV have two parts:  the thing that appears 
on the front panel, and the corresponding terminal on the diagram.  They also come in two 
“flavors”, depending on whether you read from them, or write to them.  In Figs. 1.3 and 1.4, 
the objects labeled “No. of points”, “x start”, and “x end” are all controls.  The program 
reads from them.  The object labeled “XY Graph” is an indicator. The program writes to it.  
This division is very strict:  variables are either controls or indicators.  The program either 
reads from them, or writes to them, but not both.  (There is a way around this using local var-

iables.  We’ll get to them later.) 

One of the cool features of LabVIEW is that variables can have names that 
would be illegal in any other language.  They can have spaces and symbols and 
punctuation if you want.  You can even give two different variables the same 
name!  LabVIEW will always know which one is which, although you will not.  
Don’t do this. 

The most common method for adding a variable to your program is from the front panel.  
Open a blank VI, and right-click on the front panel.  You should get a pop-up menu that 
looks something like the left-hand side of Fig. 1.5.  To get the right-hand side of the figure, I 
slid the mouse over the upper left square, and the Numeric sub-menu popped open.  Move 
the mouse over each item, and you get its name shown at the top.  Everything here is either a 
control or an indicator.  In the  

 

FIGURE 1.5  The Controls Palette for placing objects on the front panel. 
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upper left is a numeric control.  To its right is a numeric indicator.  They are not really differ-
ent, except values are read from one and written to the other.  In the second row, the left-
most object is a vertical fill slide (an indicator) and next to it is a vertical pointer slide (a con-
trol).   There is no significant difference between the slider control and the text box control!  
In one case, you type the value you want the variable to have.  In the other you move the 
slider until it has the value you want.  The slider defaults to a zero to ten range when you 
drop it on the front panel, but you can double click on the starting and ending values and 
change them to anything you like.  Similarly, there is no real difference between the indica-
tors except how the value is displayed.  In fact, both can have a digital display that you type 
into or read from, making the slider part pure eye candy. 

One of the best designed and most powerful tools in LV is the right click, 
which brings up the context menu.  As the name implies, the contents of this 
menu depends on the context in which you right-clicked.  You should get in 
the habit of—as an experiment—right-clicking on things, and examining the 
list of options that is presented.  If I tell you to do something in this book, but I 

don’t tell you how, you can bet that it involves a right-click.  I’ll highlight a few key right-
clicks as we go along, but there are far too many options to cover in a skinny volume like this 
one.  Explore, explore! 

If you haven’t fixed it yet, the controls panel you get by right-clicking on the 
front panel looks nothing like Fig. 1.5.  Probably the Express controls are the 
default.  They are very limited, and you should fix yours to look like mine.  Note 
the little thing that looks like a push-pin in the upper left of the palette.  It is a 
push pin.  Click on it and the palette is “pinned” to the screen.  When you do 

that, a Customize button will appear, which will allow you to put the Modern palette at the 
top, and also control other aspects of how the palette looks.  (I am really particular about my 
work environment.  Time is short, and there is a lot to do.  I insist on customizing the LV en-
vironment to make my work as efficient as possible.  You should too.) 

In addition to controls and indicators, there is a third variable form, the constant.  Constants 
are controls that have a fixed value.  They appear only on the diagram, as their value cannot 
be changed by the operation of the program. 

In all cases (control, indicator, and constant), these objects also have a specific representa-

tion.  You are very unlikely to use anything other than the big three:  double precision real, 
32-bit integer, and unsigned 32-bit integer.  Once you have created a control, for example, 
you can right-click on it to change its representation.  If you don’t know the difference be-
tween a real and an integer in the context of computer programming, this book is not the 
place to learn it! 

Variables can hold just a single value, or they can be arrays of values.  These arrays can be 
one-dimensional, two-dimensional, or n-dimensional.  There are also more complicated ob-
jects that are the equivalent of structures in C.  In LV, these are called clusters in which sev-
eral different kinds of objects (e.g. a real number, a Boolean, and an array of integers) can all 
be bundled together in a single object.  You will find that clusters are common in FRC pro-
gramming. 
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Expressions and Assignments 

Time to learn by doing!  We’ll write a program that executes the statement “C = A + B”, ex-
cept that it won’t be something you recognize as a statement (i.e. as a line of code).  Create a 
new, blank VI.  On the front panel, place two Numeric Controls named A and B, and a Nu-
meric Indicator named C.  Your front panel should look something like Fig. 1.6.  

Flip over to viewing the diagram, you will have something that looks nothing like Fig. 1.7.  
To begin with, unless you have already fixed this, your terminals are not sleek and svelte like 
mine, but big, blocky, and awkward.  Also, your terminals are probably randomly scattered 
about the diagram, and not neatly arranged in anticipation of the connections to be made.  
You should fix both of these things.  To change how terminals appear, go to the Tools menu 
and select “Options…”.  Select the Block Diagram category and un-check “Place front panel 
terminals as icons”.  The new setting will apply to any new objects you create, but won’t 
change the objects you’ve already put in your program.  You get only one guess as to how to 
bring up a menu that will let you change how the already placed terminals appear.  You will 
have to do that for each one. 

 

   

FIGURE 1.6  The front panel of a very simple program. FIGURE 1.7  The block diagram for Fig. 1.6. 

Right-click on the diagram to bring up the Functions Palette.  If it doesn’t look like mine 
(Fig. 1.8), or like the way you want it to,  then pin it and customize it, just as you did with the 
Controls Palette.  Find the Numeric sub-palette, select the Add function, and place it on your 
diagram.  I’ve laid out the terminals in a suggestive fashion, and it should be obvious where 
it goes. 

Now we need to connect things up.  Hold down the shift key and right-click on the diagram.  
This brings up the Tools Palette (Fig. 1.9).  You need to use the little spool symbol on the 
left, so you could select it.  But it is much better to select the Multipurpose Tool at the top, 
which will automatically give you what you need, depending on where you move the mouse.  
In Fig. 1.9, the Multipurpose Tool has been selected. 

It takes some getting used to the spool tool.  When drawing a wire that has to 
turn corners (as in Fig. 1.10 below), you can click to set the location of the cor-
ner.  You will notice that the tool is always trying to draw a vertical line seg-
ment, or a horizontal one.  You can force it to switch from one to the other 
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(while drawing a wire) by hitting the space bar.  Also, go to the Tools menu and select “Op-
tions…”.  Select the Block Diagram category and, under the Wiring sub-category, un-check 
“Enable automatic wire routing”.  But leave “Enable auto routing” checked.  (Trust me.  
They are different!) 

    

 FIGURE 1.8  The Functions Palette. FIGURE 1.9  The Tools Palette. 

Now, with the Multipurpose Tool selected, if you hover the mouse over the little black trian-
gle on the A terminal, the cursor should change to a spool.  Click to start the wire, and con-
nect it to the B terminal.  This is wrong, and LabVIEW will tell you in two ways.  The wire is 
drawn as a dashed line with a big red X, indicating that it is a broken wire.  If you look in the 
upper left of your diagram (or front panel), you will see that you have “broken arrow” syn-
drome.  A LabVIEW program with a broken arrow will not run. You can clear broken wires 
by selecting and deleting them, or you can use the ctrl-B key combination to delete all the 
broken wires in your program at once. (Use ctrl-B with caution.  Sometimes a simple prob-
lem will cause all of a complex diagram to appear broken.  Fixing that simple problem will 
be much less work than re-drawing the entire diagram.) 

So, clear the broken wire, and wire the diagram to match Fig. 1.10.  From the front panel you 
can type values into A and B, and hit the (un-broken) white arrow in the upper left to run the 
program and have the result of the addition assigned to C. 

What did you not do?  In languages like Java and C, you need to compile and link your pro-
gram before you can run it.  LabVIEW does all that automatically and more or less instantly.  
If you have the white arrow, your program is ready to run.  (To be fair, that is only true for 
programs that run on your computer.  You will need to compile your robot programs, but that 
doesn’t happen until the next chapter.) 
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FIGURE 1.10 Our simple program, all “wired up.”. 

The multipurpose tool can be a bit tricky if you are using it to drag wires 
around on your diagram.  I like a neat, easy to  read diagram, so I select and 
drag the wires to where I want them.  It is really, really easy to click on a wire, 
only to find that the move tool (a pointer arrow) changed to a wiring spool just 
as you clicked, so now you are adding a new wire to your wire instead of mov-
ing it. Hit the Escape key or right-click to get out of situations like this. 

LabVIEW contains several automatic tools for neatening up your diagram.  I am 
never quite happy with the results, so never use them.  You may have a different 
opinion.  Look for the button with the broom along the top of your block dia-
gram, or select just the part of your diagram you want to neaten and type ctrl-u. 

As I promised, there is no explicit assignment statement.  The wires in Fig. 1.10 are Lab-
VIEW’s equivalent of assignment statements.  But don’t think of them like that.  Think of 
them as wires.  Data flows along the wires, from one object to another.  LabVIEW is cultural-
ly insensitive.  It is designed so that the data flow is, generally speaking, from left to right.  
My apologies if you learned to read in a non-Western culture and expect things to flow from 
right to left or top to bottom.  National Instruments is headquartered in Texas, and you just 
don’t mess with Texas.  Please respect the left-to-right thing, and make all your programs 
clean, neat, and well organized.  You will be really grateful for this when you are in the pit, 
you need to make a software change in under three minutes, and your whole team is scream-
ing at you to hurry up.  Programs that are easy to read are easy to debug.  Programs that are a 
snarly mess are, well, a snarly mess. 

The lack of an assignment statement brings up an interesting question:  How would you pro-
gram a simple assignment like I = I + 1?  This is trivial an any text based language, but it re-
quires reading from and writing to the same variable.  In LV, we can read from OR write to a 
variable but not both.  Except…for what are known as local variables.  

Do this:  in LabVIEW, create a new blank VI (ctrl-n for people in a hurry), and drop a nu-
meric control on the front panel.  Be creative and name it “I”.  On the block diagram, right-

click on it and select Create ► Local Variable.   The resulting object is the variable I, but in a 
form you can write to.  If that is not what you need, you can right-click on the local variable 

and select Change to Read.   Fig. 1.11 shows a program with three different solutions to the 
“I = I + 1” problem, all equally valid.  Every time you run this program, the values will in-
crease by one.  The third example in the program shows that you can have several local vari-
ables that all refer to the same variable.  They still have to follow the general LabVIEW 
“read or write” model in that each local can only be a Read type or a Write type, but you can 
have both types in the same program. 
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FIGURE 1.11 Three different implementations of I = I + 1. 

The easiest way to make a local variable—assuming you already have one—is 
by the “control-click-drag” method.  Hold down the control key, click on an 
existing local variable, and drag it to make a copy.  Then you can left-click on 
the new copy to see a list of all your variables and select which one you want 
this local variable to be.  (You can copy pretty much anything by the “control-
click-drag” technique.) 

Now that you know about local variables, be aware that you have been handed a very sharp 
implement with which it is all too easy to harm yourself.  Do not fall into the Beginners Trap 
and start using local variables everywhere for everything.  They consume a lot of memory 
and computer resources, and you can easily use them to make your program unpredictable 
and difficult to debug, neither of which is a desirable trait.  They are largely unnecessary, and 
you should use them only when there is no other solution.  Consider them Dangerous.  They 
have an evil cousin, global variables, that are even worse.  Globals are widely considered an 
Absolute No-No That Only An Idiot Would Use.  They are also essential to programming 
your robot.  We will encounter them in Chapter 4. 

Conditionals 

Changing the operation of a LabVIEW program based on whether a result is True or False is 
done with the Case Structure element, which is found on the Structures palette (see Fig. 
1.12).  Fig. 1.13 shows the front panel and block diagram of a simple program that changes 
its output depending on the value set by a front panel switch.  (You should draw that example 
for yourself, because I’m going to ask to you to modify it in a moment.)  The case structure 
in this example has two panels, one for the case that the input is True, and the other for the 
case that it is False.  You can only view one at a time, but you can switch between them with 
the little control bar at the top.  (You can also right-click on this control panel to get a list of 
other things you can do to modify this structure.) 

The easiest way to switch between panels in any of LV’s multi-panel structures 
is to make sure the cursor is inside the structure, hold down the control key, and 
scroll the wheel on your mouse.  Don’t have a wheel mouse?  Don’t whine.  
Don’t tell me that you really like the touchpad and you’re really good with it.  
Don’t make excuses.  Just get the mouse. 
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FIGURE 1.12 The Case Structure selected from the Structures palette. 

 

FIGURE 1.13 A simple case structure example program. 

In Fig. 1.13 we have a simple If...Then…Else structure.  If you need something more com-
plicated, like an If…Then…Else If… kind of thing, then you just need to nest one case struc-
ture inside another. 

LabVIEW case structures also play the role of constructs like switch-case in C and C++.  De-
lete the Boolean control in the example of Fig. 1.13, and replace it with an integer Numeric.  
Note how the case structure changes.  You can now add additional cases to correspond to 
other numbers.  An important rule for case structures is that there must be a case for every 
possible value of the control.  The control is a 32-bit integer and can therefore take on an in-
finite number of values (well, 232 different values, which is a large number, if not quite infi-
nite).  For that reason, one of the cases must be labeled as the Default case.  LabVIEW made 
it the 0 case, but you can make any of the other cases the default one.  If the control value 
does not match one of the cases, then the default case will be executed.  We will make exten-
sive use of this kind of case structure in robot programming. 

The control could also be a text string.  It works the same way:  if the control value (for ex-
ample,  “Do task A”) exactly matches what you have typed in the control box for a case, then 
that case will be executed.  If the control matches none of the cases, the default case is exe-
cuted.  If you don’t have a default case (for a text or numeric control), then you will have a 
broken arrow.  For my own projects (not FRC robots) I like to use case structures controlled 
by text strings, in which case I make sure there is a unique case for each possible string val-
ue.  Then I make the default case match the string “Typo”, and if that case ever executes, it 
pops up an error message telling me that I’ve mistyped something and showing me what it is. 
Of course, I could name the default case anything, since all mistakes will match it, but nam-
ing it “Typo” reminds me what the code does. 
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To see why you have broken arrow syndrome, click on the broken arrow. 

 

 

Flow Control 

If you have any programming experience, then you are already familiar with For Loops 
(called Do Loops in some languages) and While Loops.  Each of them will repeat the same 
block of code over and over.  A For Loop repeats a specified number of times.  A While 
Loop repeats until some logical condition is satisfied.  To give you flavor of how these two 
loops are similar and how they are different, we’ll work through a couple of examples.  I’m 
going to throw a bunch of other useful stuff at you too, so pay attention. 

For Loops 

We’ll start with a very simple example:  filling an array with 100 random numbers, as illus-
trated in Fig. 1.14.  To make this program, I carried out the following steps.  You should do 
this yourself now. 

1.  Make a new blank VI. 

2.  From the Structures palette, draw a For Loop on the block diagram 

3.  Right-click on the loop count (the blue “N” in the upper left) and create a constant.  
Set the value to 100. 

4.  From the Numeric palette, drop the random number generator inside the loop. 

5.  Using the Wiring Tool (the spool), wire the ouput of the random number generator to 
the right-hand side of the loop.  Be careful to click exactly on the edge of the loop, 
and not outside the loop.  If you ignored my advice and are using a track-pad instead 
of a mouse, expect this to be difficult.  I have no sympathy. 

6.  If you did step 5 correctly, the random number generator is wired to what is known as 
an output tunnel on the right-hand edge of the loop. The tunnel should be a square 
box with a pair of square brackets nestled inside it.  This particular tunnel is an index-

ing tunnel.  On the inside of the loop, the wire carries a single real number.  Wires 
connecting to the tunnel outside on the loop are arrays, as you will discover in Step 7. 

7.  Right-click on the output tunnel and create an indicator.  It will have the default name 
“Array” which you can keep or change. 

That’s it.  Run the program to fill the array with 100 random numbers between 0 and 1.  On 
the front panel, discover that you can stretch the array indicators to show more than one ele-
ment in the array.  You can stretch down or to the right.  Also discover that if you do it 
wrong, you stretch the size of the individual elements instead of showing more elements.  
Figure out how to use the index window to show the 100th element (without stretching the 
array to show all 100 elements). 
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FIGURE 1.14  A simple program that fills an array with 100 random numbers. 

Looking back at the block diagram, notice how the wire connecting the tunnel to the indica-
tor is thick.  This type of wire indicates a one-dimensional array.  You will notice this in oth-
er cases:  not only the color, but the pattern and the thickness of wires tell you what type of 
data they carry. 

Now, before we go on to While Loops, we’re going to introduce something that has nothing 
to do with loops, but is very useful in robotics:  graphing data.  When you are trying to sort 
out sensors, controls, and whatnot, it can be incredibly useful to throw up a graph of what is 
going on in real time.  This will give you an idea how to do it.  (Less useful in competitions.  
This stuff is really for debugging and understanding...) 

Go to the front panel of your random number generator, and, from the graph palette, drop in 
both a Waveform Chart and a Waveform Graph.  You can stretch these to resize them, 
change the axis labeling, go from automatically scaled axes (the default) to fixed axes of your 
choice, plus all kinds of other stuff, which I am going to leave you to figure out on your own.  
You just need to know that like everything else, these follow the Zen of LabVIEW, so things 
that work on other objects probably work in the same way on these. 

On the block diagram, wire up the graphs exactly as shown in Fig. 1.15. If you put them in 
the wrong place, you will get broken wires.  (Actually, Waveform Chart is smart enough to 
figure out how to behave if you wire it up on the “wrong” side of the loop.  Waveform Graph 
is not.)   

Finally, put a 100 ms delay inside your loop using the Wait(ms) function from the Timing 
palette (you can find it!).  This delay serves no purpose except to slow things down enough to 
show you how the two different graphs behave.  Run the program and observe the two 
graphs.  We are illustrating the difference between a Waveform Chart, which accepts one 
point at a time, using the point number as the x-axis, and a Waveform Graph, which wants 
the entire array of y values at once.  The x-axis is still the point number (index) of each y val-
ue. 
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FIGURE 1.15  The random number program with two different kinds of graphs added. 

There is a third kind of graph available, the XY Graph.  This wants two arrays 
(bundled together in a cluster), one containing the x value of each point, and one 
containing the y values.  We used one in Figs. 1.3 and 4. 

 

The second important point being illustrated by this little program is the behavior of output 
tunnels.  The data in the second graph does not appear until the loop is finished.  That is be-
cause the data values in output tunnels are not available until all the code inside the structure 
has finished executing.  I called it a “structure” instead of a “loop” on purpose.  In addition to 
loops, all of the similar looking objects on the Structures palette (the ones that get drawn as 
rectangles on the block diagram) can have both input and output tunnels.  No code inside a 
structure will execute until all the input tunnels have valid data present.  No output tunnel 
will have valid data until all the code inside the structure has finished executing.  Pay atten-
tion to these rules.  Otherwise, your robot may hang waiting for some data input to become 
valid when you would much rather it be picking up the whatsamajig and placing it inside the 
doohickey. 

Exercise E1:  If you right-click on the output tunnel in the random number program, one of 
the available options is a sub-menu called “Tunnel Mode”.  Explore the difference between 
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“Indexing” and “Last Value”.  Hint:  for more clarity, wire the loop index (the blue “I” in a 
box) to the tunnel instead of the random number generator. 

While Loops 

Draw the program illustrated in Fig. 1.16.  There is a lot of new stuff here introduced all at 
once, so we’ll take it one step at a time.  First, notice the red stop sign like object in the lower 
right corner of the loop.  This is the Conditional Terminal.  It is currently configured for the 
condition Stop If True. On the front panel you have a slider control that can have any value 
between 0 and 10.  On the diagram, this control is inside the loop, which means that the slid-
er value will be read each iteration of the loop.  There is also a single real value, the Thresh-
old, which is read once when the program starts up.  Once you’ve got it drawn, run it until 
you have a good sense of how it works. 

 

FIGURE 1.16  A simple example of a while loop.  Note the structure on the 
left used to initialize variables. 

Also in the block diagram is a “trick” to initialize the slider value and the Trigger Boolean.  
As long as a VI remains in memory, its internal variables maintain their values.  If you did 
not include this initialization code, you would have to manually reset the value of the Trigger 
Boolean and drag the slider below the threshold value before restarting the program.   The 
two assignments (to local variables) that initialize the Slider and Trigger are inside a Se-
quence structure.  This kind of structure allows you to enforce the order in which events take 
place.  Usually such a structure has multiple panels.  Here we have only used a single panel, 
because all we are doing is using the rules about when code in structures can execute to en-
force an order of operations.  The output tunnel on the Sequence won’t have valid data until 
both assignments have been made.  The While Loop can’t start until that output data from the 
Sequence is made available at its input tunnel.  Note that we don’t even do anything with that 
tunnel!  The connection is only made as a way to force the order of events.  Now, as with 
many things in LabVIEW, there is more than one way to get the job done.  You could ask 
“why not just use a sequence, since it is designed to control the order of events?”  That would 
work very well:  draw a sequence structure with two panels.  Put the variable initializations 
in the first panel and the rest of the code in the second.  I’m showing you the wire trick be-
cause it is very useful, and often allows a more compact and cleaner way to accomplish the 
same thing. 

You may be asking yourself “why the 100 ms delay inside the While Loop?”  Well…perhaps 
you were not asking yourself that, but you should have been, so just take a moment to feel 
embarrassed.  OK.  That’s enough embarrassment.  But the delay is very important.  This 
loop spends 99.99% of its time waiting for an input.  In this case, it is waiting for you to 
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change the slider value.  On a robot, it could be waiting for a switch to close, or some voltage 
to reach a particular value.  But people and mechanical systems are slow, while computers 
are fast.  Without the delay, the loop will run as fast as it possibly can, consuming all the 
available processor time and bringing your computer to its knees.  Or it would, if you were 
not running some modern, robust, multi-threaded operating system on a state of the art, high-
powered, quad-core processor.  That loop would completely crush a computer from, say, the 
ancient year 2000.  It would also completely crush the cRIO computer on your FRC robot, 
which is a relatively puny little thing, and which has an operating system that is not as well 
defended against that kind of basic error. 

Exercise E2:  Modify the While Loop example so that it operates correctly using a Continue 
If True termination condition. 

Exercise E3: Modify the While Loop example so that you can change the threshold while 
the program is running. 

Exercise E4:  Modify the program to use a Sequence structure instead of the wire trick to 
force the initialization to happen before the loop starts. 

Exercise E5:  Remove the initialization code and explore how the program behaves without 
it. 

Exercise E6:  Re-write the For Loop example of Fig. 15 so that it uses a While Loop instead. 

Shift Registers and Feedback Nodes 

Before we leave the subject of loops entirely, let’s take a moment to re-visit the I = I + 1 
problem.  Start by drawing the program illustrated in Fig. 1.17.  The big, clunky tunnels with 
the up and down arrows are actually a single object, called a Shift Register.  Whatever value 
is written to the right-hand side in one iteration of the loop is available to be read from the 
left-hand terminal on the next iteration.  You create this object by right-clicking on either the 

left or right side of the loop and selecting Add Shift Register. 

 

FIGURE 1.17  Another implementation of I = I + 1. 

Note that a True constant has been wired to the Conditional Terminal of the loop.  That will 
cause the loop to execute just one iteration each time the program is run (a While Loop al-
ways executes at least once).  Run the program and look what happens to the value of I.  Run 
it multiple times to verify that the value of I keeps incrementing.  (Remember, variables and 
their values remain as long as the program remains in the computer’s RAM memory.) 

Exercise E7:  Right-click on the left-hand terminal of the Shift Register.  Select Create ► 

Constant, and set the value of that constant to something other than zero.  Now run the pro-
gram multiple times.  Explain the behavior. 
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Finally, draw the program shown in Fig. 1.18.  The arrow thing is a Feedback Node, and it is 
found on the Structures palette.  Verify that it behaves just like the Shift Register-based pro-
gram of Fig. 1.17. 

These examples are kind of trivial, but Shift Registers and Feedback Nodes are essential in 
robot programming.  We will see a lot of them later. 

 

FIGURE 1.18  And yet another implementation of I = I + 1. 

Sequences 

Consider the simple program in of Fig. 1.19.  When you run it, what is the value of C at the 
end?  If you are thinking “left to right”, you might guess -1.  If you think about program exe-
cution time, you might guess 1.  Both guesses are wrong.  The correct answer is “this is Very 
Bad.  You should NEVER do this!”  This program has what is known as a Race Condition.  
LabVIEW looks at these two independent bits of code floating free on the block diagram, and 
feels perfectly free to execute them in whatever order it feels like.  Actually, this is one of the 
most powerful features of LabVIEW.  What it will really try to do is execute both pieces of 
code at once, or “in parallel” if you want to sound cooler.  It will not just run the two pieces 
of code in parallel, but will try to optimize the compiled code so both bits complete as quick-
ly and efficiently as possible.  That sounds a bit ridiculous if all we are talking about is some-
thing as simple as Fig. 19, but you will see later in Chapter 4 that your robot will rely on mul-
tiple while loops, all doing complicated stuff, running in parallel.  This is complicated to do 
in other programming languages, but trivially easy in LabVIEW. 

 

 

FIGURE 1.19  A race condition:  C could be assigned either 1 or -1. 

If you care about the final value of C in programs like this one, then you have to control the 
order in which things happen.  There are lots of ways to do this (like the dummy wire trick of 
Fig. 16), including the Sequence structure (found on the Structure Palette with While and For 
loops). There is no equivalent in text-based languages because the structure of the code al-
ready is a sequence structure.  If you put one line of code above another in your text file, you 
can be sure that the first line executes first, and the second line executes second. 

Fig. 20 shows two different versions of the same idea.  Both use a Sequence structure to en-
sure that the For loop completes before the value -1 is assigned to C.  On the left is a flat Se-
quence in which you can see everything at once.  On the right is a stacked Sequence that 
shows only one step at a time.  You change the view with the little control at the top, just as 
with a Case structure. 
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FIGURE 1.20  Preventing a race with a flat or stacked sequence. 

Now that I’ve introduced them, I should tell you that you really want to avoid Sequence 
structures like the plague in your robot. They can be useful, but your primary means of con-
trolling the order in which things happen will be a state machine, the subject of the next 
chapter. 

Subroutines 

We have come to the last item on our list of programming language “must haves”.  Subrou-
tines serve two important functions.  If there is some piece of code you use repeatedly, and at 
different places in your code, you can put that code inside a subroutine, and both make your 
code easier to read, and reduce the size of the compiled object.  The code is compiled at one 
location in memory and re-used, although how this reduces the size of the program is a topic 
for a different book.  A second important function is simply to make your code easier to read 
and easier to debug. If you have some complex piece of code that is a logically thought of as 
a single operation, it makes sense to package it as a subroutine or function (there is no dis-
tinction in LV), even if you only use that code at one location in the program. 

As an example, we’ll use an utterly simple piece of code that is useful in one of the home-
work problems at the end of the chapter.  Fig. 1.21 shows a VI that takes a real number as in 
input, divides it by 100 (converting cents to dollars), and formats it into a string.  It should 
take you no time at all to make your own version of this program, which you should do now. 

 

FIGURE 1.21  Block diagram of the Cents2DollarString VI. 

Once you’ve saved this little program (using a sensible name like “Cents2DollarString.vi” 
that will tell you its function a year from now), it is just that, a program.  To make it usable as 
a sub-VI (LabVIEW’s name for a subroutine), you have to do some additional work.  Look at 
the front panel.  In the upper right corner are two squares.  One is a generic LabVIEW icon 
for the program.  The other is a square composed of a bunch of smaller squares and rectan-
gles.  This is the connector pane for the program.  (In older versions of LabVIEW, you have 
to right click on the icon to get to the connector pane, but you should have the latest and 
greatest version from your team’s Kit of Parts.) 

If you place the mouse cursor over the connector pane, it will change to a wiring spool.  
Click on a square to use as an input terminal, and then click on the control that you want 
connected to that terminal.  In this little example, there is only one control to choose, so 
choose it.  Repeat the process for the output:  click on a terminal in the connector pane, then 
click on the string indicator.  The panes will acquire a color that shows the type of the data 
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that moves in or out through them.  Just as variables in LV are either read or write, but never 
both, terminals are inputs or outputs, but never bidirectional. 

When you pick a terminal to serve as an input or an output, remember the left-to-right flow 
of LabVIEW.  The terminals on the left edge should always be wired as inputs, and the ter-
minals on the right edge should always be wired as outputs.  LabVIEW will not enforce this, 
so it is not a real rule, and you are free to violate it.  You should however, think of it like 
spilling your lunch all down the front of your clothes.  No one will stop you from doing it, 
but it’s kind of embarrassing, and people will laugh at you.  The (unwritten) rules for termi-
nals in the middle, along the top and bottom edges of the connector pane are more relaxed.  
In some cases, I’ve seen terminals to the left of the center line wired as inputs, and terminals 
to the right wired as outputs.  In other cases, all terminals along the top edge were wired as 
inputs, and all the ones along the bottom were outputs.  You may encounter situations where, 
for example, you need all the middle terminals to be inputs.  That’s OK.  Just don’t break the 
rules along the left and right edges.   

In the current situation, we have a program with only one input and only one output.  The 
default connector pane, however, has a total of 12 terminals.  If that strikes you as silly, right-
click on the pane and select Patterns to choose a different arrangement of terminals (like the 
pattern that has only two terminals). 

Once we’ve defined the inputs and outputs, we need to change the icon to something useful.  
When you use this subroutine, all you will see in your diagram is this icon, so it should im-
mediately tell you which subroutine it is and give a clear idea of its function.  Right-click on 
the icon to bring up a dead-simple bitmap editor.  It is possible to spend a lot of time produc-
ing very fancy looking icons.  But that takes time, and build season is very short!  I recom-
mend a very simple text icon, as shown in Fig. 1.22.  I also recommend changing the font in 
the icon editor to 11 points from the default of 10.  It makes the text actually readable.  You 
only need to do this once and LabVIEW will remember your preference. 

 

FIGURE 1.22  Icon and terminal pane of Cents2DollarString.vi. 

To use the subroutine, create a new blank VI, right-click on the diagram and choose “Select a 
VI…”  Point the dialog box at your saved subroutine, and drop a copy in the diagram.  Use 
the right-click creation method to create a control and an indicator, and you are ready to go. 

Exercise E8:  Use the Cents-to-Dollar-String VI you just created as a subroutine in another 
VI.  (Because I know you didn’t do it yet.) 
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Clusters 

We have covered everything on my list of “must haves” for a programming language, but 
there is one thing we should cover before we move on:  clusters.  The equivalent construct in 
C is a structure.  It a way to build up a single object that contains a random assortment of 
other objects, like variables, arrays, and even other clusters.  I’ve mentioned these already, 
but you really do need to understand them in order to code your robot, and they are full of 
LabVIEW Zen. 

Fig. 1.23 shows a random collection of objects connected to a Bundle node, found on the 
Cluster, Class, & Variant palette.  You can see the cluster contains a few Boolean controls, a 
real control, a text constant, an array of integer controls, and a real constant.  The pink spot-
ted wire that emerges from the node is the cluster, which I have wired directly to an Unbun-
dle node.  The Bundle node is one of these objects that only has two connection terminals 
when you first drop it on the diagram, and you drag vertically to re-size.  The Unbundle 
node, on the other hand, will automatically resize itself to give you an output terminal for 
each item in the cluster.  Note that in order to correctly wire to the outputs on the Unbundle 
node, you have to know the top-to-bottom order in which things were wired to the Bundle 
node.  Otherwise, you have no idea which of the three Boolean outputs corresponds to which 
input. 

 

FIGURE 1.23  The Bundle and Unbundle nodes for manipulating clusters. 

Well, there is an Easier Way.  Also on the same tool palette is the Unbundle By Name node.  
If you were to wire that up to the cluster instead of the plain old Unbundle, you would get six 
(after you did a vertical drag, because you only get one showing when you first wire it up) 
output terminals, each colored and named to match the type and name of an input, so you 
would have no trouble knowing how to wire it up.  Count carefully.  There are seven inputs 
in Fig. 1.21.  Why would there only be six outputs?  Look again at the seven items.  Five of 
them are controls, which automatically have a name, and the real constant apparently had a 
name you didn’t know about.  The text constant does not automatically.  But you can give it 
one, and also change the name of the real constant.  Right-click (what else?) on one of them, 

and select Visible Items ► Label.  Type a name, and it can appear in the outputs of an Un-
bundle By Name node.  No name, no output. 

If you go back to the Cluster, etc. palette, you will see that there is also a Bundle By Name 
node, and in Fig. 1.24 I’ve used it so that the un-named text constant can be passed through 
the cluster and unbundled by name. 

The naming is no longer controlled by the inputs.  It is controlled by the cluster constant.  
This input is required, your program will not run unless you have wired this input of Bundle 
By Name.  Each of the constants inside that cluster has a name (label), which I hid again after 
entering, just to make the diagram tidier.  You can see from the list of names in the cluster 
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that they don’t have to match the names of the inputs.  They can be anything you want.  You 
can see from the Unbundle By Name node that you are free to reorder the outputs in any way 
you want.  You can do the same with the inputs on the bundling node. 

Finally, note that the input with the names does not have to be a constant.  It can be a cluster 
full of valid data.  If you need to change the value of just one or two (or more) of the ele-
ments in the cluster, wire it to the input of a Bundle By Name, make the node show only the 
values that need to be changed, and wire in the new values.  They will replace the original 
values in the output cluster. 

 

FIGURE 1.24  Bundling and unbundling by name. 

Graphing More 

At some point you may find it useful to plot more than one thing on a chart or graph.  Many 
things in LabVIEW are intuitive.  Many others become intuitive once you understand the Zen 
of LabVIEW.  Not graphing multiple lines on the same plot.  It’s random.   

A few pages back I explained that there are three kinds of graphs:  Waveform Charts, Wave-
form Graphs, and XY Graphs.  The two “waveforms” have no x-axis data.  They are arrays, 
and the index of the array serves as the x-axis.  For an XY Graph, you need two arrays, one 
for the x-axis, and one for the y-axis.  They need to be the same size (obviously).  Fig. 1.25 
shows how to wire each of these cases to put two curves of data onto the same chart or graph.  
Extending to more than two is straightforward. 

 

 (a) (b) (c) (d) 

FIGURE 1.25 Wiring more than one curve of data to charts and graphs.  In 
every case there is a snippet of a For Loop showing.  To the left of the snip-
pet is inside the loop, and to the right is outside. 

Part (a) of the figure shows how to put multiple curves on a Waveform Chart:  You cluster 
them together with a Bundle node.  Remember that the terminal for this chart goes inside a 
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loop, because it expects the data one point at a time.  Part (b) of the figure shows how to do 
this for a Waveform Graph, which wants all of the data at once in an array.  For multiple 
curves, use a Build Array node (from the Array palette).  Make sure that Concatenate Inputs 
is not selected for this node.  (What’s that?  Right-click on the node…)  Based on the rule for 
Waveform Chart, you might expect that the arrays should be clustered together, but you 
would be wrong…   

Part (c) shows how to wire up a single curve for display in an XY Graph.  As in the wave-
form case, “graph” means that you need to have all the data on hand before you can plot, so 
the graphing terminal is outside your loop.  The x-axis data gets wired to the upper input of 
the Bundle node.  Finally, part (d) shows how to plot multiple curves on an XY graph.  Each 
curve is bundled into a cluster, and then the clusters are gathered together in an array.  Each 
curve has its own, independent x-axis (which could be the same for all the curves, or not:  
they’re independent).  The curves do not have to have the same number of points (that inde-
pendent thing again).  

Problems 

Problem 1.1 – There are three “essential” logic operators on the Boolean palette:  AND, OR, 
and XOR (exclusive or).  Write a VI that reads two Boolean controls (A and B) and simulta-
neously displays the output from all three operations.  It should be clear on the front panel 
which indicator is showing the result of which operation. 

Problem 1.2 – Modify the program you wrote for Problem 1.1 to include the result of one 
more logical operation:  Take the output of (A AND B) and XOR it with the output of (A 
XOR B).  Arrange the front panel so the output of this new operation is easy to compare with 
the output of (A OR B). 

Problem 1.3 – Create a VI with four Boolean controls and one integer indicator.  Name the 
controls Bit 0, Bit 1, Bit 2, and Bit 3. Write a program that reads the four controls, treats 
them as a four bit binary number, converts the result into an integer, and writes it to the indi-
cator.  For example, if only Bit 0 is set, the indicator should get a 1.  If only Bit 3 is set, the 
indicator should get a 4. 

Problem 1.4 – Write a program in which you use Bundle By Name to change the value of 
one element in a cluster with several elements. 

Problem 1.5 – The built-in random number generator in LabVIEW returns numbers uni-
formly distributed between 0 and 1.   

a) Write a subroutine that, when called, returns a uniform deviate, which is to say, a ran-
dom number uniformly distributed between -1 and 1.  (Hint:  it uses the built in gen-
erator and a bit of math.) 

b) Write a program that generates an array filled with 10,000 uniform deviates, and then 
generates a histogram of the data in the array.  Plot the histogram.  Your histogram 
should have 50 intervals, and the y axis of your plot should go from 0 to 250.  (Hint:  
There is a VI on the Probability & Statistics palette that will do the work of generat-
ing the histogram from the array.  The output of this VI wants to be connected to an 
XY Graph.) 

Problem 1.6 – Write a program that fills a 100 by 100 array with uniform deviates. 
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Problem 1.7 – Combine your solutions to Problems 1.5 and 1.6 in the following way:  write 
a program that fills an array with 10,000 random numbers, but the random numbers are cal-
culated by finding the average of 100 uniform deviates.  Make a histogram of these 10,000 
random numbers, using 50 intervals as in Problem 1.4.  (Hint:  There is a VI on the Probabil-
ity & Statistics palette that will find the average of the values in an array.)  Are these 10,000 
random numbers uniformly distributed?  (If you are curious about what is going on, mathe-
matically speaking, look up the Central Limit Theorem.) 

Problem 1.8 – Figure out how to use the timing functions to tell you the execution time of 
your solutions to problems 1.6 and 1.7. 

Problem 1.9 – Write a subroutine that implements the Box-Mueller algorithm, which is as 
follows: 

1. Choose two uniform deviates, �� and ��. 
2. Perform the following test:  calculate � = 
���� + 
����.  If  is either zero, or ≥ 1, 

reject these deviates and return to step 1.  Otherwise, proceed to step 3. 
3. Calculate 

�� = ���−2 ln
��� 	 
4. Return �� as the output of your subroutine. 

(The clever student will notice that we are neglecting an important efficiency:  we can actual-
ly obtain two numbers from a single call to the Box-Mueller routine, �� as above, and �� cal-
culated using �� instead of �� in step 3.  Of course, I haven’t told you what this routine does, 
because you will find out experimentally in Prob. 1.10, but you might guess if you’ve done 
Prob. 1.7.) 

Problem 1.10 – Copy your solution to Problem 1.7, and instead of averaging 100 uniform 
deviates, make a single call to your Box-Mueller subroutine.  Compare the output and execu-
tion time of the two programs. 

Problem 1.11 – Write a program that continuously reads a slider, knob, or other front panel 
control, and sets a Boolean indicator True if the control goes above some threshold, and 
False if the control goes back down through the threshold.  The threshold value should be 
settable on the front panel while the program is running.  There should be a button on the 
front panel that will stop execution of the program when it is pressed. 

Problem 1.12 – Write a program to find all the prime numbers less than n (settable from the 
front panel) using the algorithm known as Eratosthenes’ Sieve: 

1. Create a list of consecutive integers from 2 to n: (2, 3, 4, ..., n). 
2. Initially, let p equal 2, the first prime number. 
3. Starting from p, count up in increments of p and mark each of these numbers greater 

than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them 
may have already been marked. 

4. Find the first number greater than p in the list that is not marked; let p now equal this 
number (which is the next prime). 

5. If there were no more unmarked numbers in the list, stop. Otherwise, repeat from step 
3. 
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Problem 1.13 – Write a subroutine named Timeout.vi.  It has two inputs, which I will call 
Limit In and Start Time In.  They should be un-signed 32 bit integers.  There are two outputs: 
a Boolean (called Timeout) and an un-signed 32 bit integer called Start Time Out.  This sub-
routine should read the Tick Count (one of the LabVIEW timer functions), and subtract the 
value of Start Time In.  If the result of this subtraction is greater than Limit, then Timeout 
should be set to True.  Start Time Out should just be the value of Start Time In.  Use the de-
fault connector pane, wiring Limit to the upper left corner, Start Time In to the lower left 
corner, Timeout to the upper right corner, and Start Time Out to the lower right corner.  (This 
VI will come in handy programming your robot.  Trust me.) 
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Chapter 2 – State Machines 
Buckle your seatbelt.  State machines are probably the most important concept and pro-
gramming technique for robotics, so it is really important that you understand them.  But they 
are a little bit complicated, and they require lots of LabVIEW Zen.  So…buckle your seat-
belt. 

What is a “state machine”?  The “machine” is your program.  When it is controlling your ro-
bot, then the machine is the hardware/software combination, but for the purposes of under-
standing, you can focus only on the software aspect.  This program spends all of its time in 
“states”, which are bits of executable code.  Each state does a minimum of two things. It (1) 
carries out some useful operation, like running a motor, and (2) it checks to see if some event 
has occurred that will cause it to transition to another state.  In many cases, the “useful opera-
tion” will be to do nothing:  the state’s only function is to wait for an event to occur. 

To make this abstract idea concrete, we’re going to build a state machine that pretends to 
launch a rocket.  The program will have five states: 

1. Ready  The program waits for the launch command. 

2. Countdown  The program counts down the seconds to launch. 

3. Fire  The program fires the rocket engine for five seconds. 

4. Engine Stop  The program turns off the rocket engine. 

5. Abort  Code that is executed if the Abort button is pressed. 

Planning 

The first step in creating this program is not to start programming!  The first step is to create 
a state diagram.  This is a diagram that shows, at a very high level, what it is your program is 
supposed to do, and it contains a rather important idea:  you should know what your program 
needs to do before you start writing it!  The more thought and clarity that you can put into the 
state diagram, the easier it will be to write the code. Of course, I can hear you now:  “Yeah, 
yeah.  He’s just some old fuddy-duddy, and I’m a hip, roboteer, and I can write code.”  So 
you will be tempted to skip this first step.  Don’t.  Robots are complicated, and winning ro-
bots will have well thought out, cleanly designed software, the kind that only comes out of a 
process that begins with state diagrams and flow charts.   

Fig. 2.1 shows the rather simple state diagram for our rather simple state machine.  (The 
planning documents for a competition robot might have 10 or 20 pages of state diagrams.)  I 
like to make these in PowerPoint, because it has nice tools for making the drawings, and you 
can project it, which makes working as a team much easier.  You can see that each of the five 
states is represented by a little oval.  The arrows represent events which take the machine 
from one state to another, or return it to the same state.  These arrows that do nothing but re-
turn the machine to the state that it is already in may seem silly to you, but when we get to 
the way the code works, you will see that those arrows have real meaning. 

The Ready state just waits for the Launch button to be pressed.  The default action is to re-
turn to the same state.  If the Launch button is pressed, then the program does not return to 
the ready state, but moves to the Countdown state.  This is an example of a state transition 
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being triggered by an event that is external to the program.  In this case the user presses a 
button, but we could equally well be waiting for a sensor to reach a certain value.   

The Countdown state decrements a counter and compares the result with zero.  If the counter 
is greater than zero, then the default action is to return to the same state.  The “event” in this 
case is internal.  The program itself defines the event that triggers a state change. 

 

FIGURE 2.1  The state diagram for our rocket launcher example. 

The Fire state is very similar to the Countdown state.  We’re decrementing a counter, and 
when it reaches zero, the program moves to the Engine Stop state.   

The Engine Stop state is trivial.  It automatically transitions back to the Ready state, so tech-
nically, it is not even needed.  The Fire state could transition directly to the Ready state, and 
that would not be a wrong thing to do.  It was a judgment call on my part to decide that a 
separate state to turn off the rocket engine made for a cleaner, easier to understand program.   

Finally, you can see that the first three states also monitor the Abort button.  If the button is 
pressed, the program transitions to the Abort state and stops execution. 

Having drawn our state diagram, we can proceed to making flow diagrams.  You need one 
for every state, so Fig. 2.2 has five separate ones.  If the actions within a state are really com-
plex, you might not be able to fit everything on one page (PowerPoint slide), but if that is re-
ally the case, maybe you should divide the action of that state into two or more states.  The 
simpler a given state is, the easier it will be to debug. 

The standard convention in flow charts is to put Yes/No (True/False) decisions in a diamond, 
with flow coming in one vertex and out one of two others.  Assignment statements and other 
actions the code performs are enclosed in rectangles.  There are many more conventions than 
this, but I wouldn’t get too caught up in those details.  The important thing is to be clear, so 
that you and your teammates can read them and tell what your program is supposed to do. 

As an example of how to read these diagrams, consider the Ready State in Fig. 2.2.  When 
the code that makes up the state starts executing, the first thing that happens is a check to see 
if the Abort button has been pressed.  If it has, then we immediately transition to the Abort 
state.  If not, then we check to see if the Launch button has been pressed.  If has not, then we 
return to the Ready state (the code will actually exit the Ready state, and then re-enter it, as 
you will see in a bit.)   If the Launch button has been pressed, then we load the Count varia-
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ble with the number 10 (because we will count down for 10 seconds) and transition to the 
Countdown state. 

  
     

    

FIGURE 2.2  Flow diagrams for each of the five states in our rocket launch-
ing state machine. 

Programming 

Before we get down to actual programming details, let’s get a high-altitude look at a state 
machine.  The heart of the state machine is a Case Structure inside a While Loop that has a 
Shift Register, as shown in Fig. 2.3.  Each case of the Case Structure is a state in the state 
machine.  On each iteration of the While Loop, the value stored in the Shift Register is used 
to select which case  

 

FIGURE 2.3  The basic structure of a state machine. 
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(state) executes.  As that code runs, one of its tasks is to write a value to the Shift Register, a 
value which will be stored and read on the next iteration of the loop.  The program shown in 
Fig. 2. 3 doesn’t do anything useful (in fact, it won’t run because I haven’t wired the Condi-
tional Terminal of the loop), but it shows the basic structure. 

If the Boolean variable named Action Happened? remains false, then a zero is written out to 
the right-hand terminal of the shift register.  On the next iteration of the loop, this zero will 
be applied to the case selector and cause this same state 0 to execute again.  If the Boolean is 
true, then the value 1 is written to the shift register, and state 1 will execute next. 

In practice, it is extremely difficult to keep track of your states by number.  It is much easier 
to give them names, and as we get into the details, you will see how we do that (although the 
fundamental control is still by integer values, they are just hidden behind the names). 

As you can see, the essential programming structure for a state machine is the 
case structure.  A state machine that does something elegant may have a lot of 
cases.  The quickest way to move through this structure to find a particular case 
is to put the mouse cursor anywhere inside that case structure, hold down the 
control key, and scroll your mouse wheel. 

Now we are ready to write the program that implements Fig. 2. 1 and its dependent flow dia-
grams.  We’ll start with the fundamental control element, the one that defines our states (and 
allows us to call them by name instead of remembering numbers).  Start by creating a new 
VI, and then drop an Enum control onto the front panel (from the Ring & Enum palette).  
“Enum” is short for “enumerated”.  It is an integer data type, with the value of the integer 
associated with a readable text string.  The Text Ring and Menu Ring controls are very simi-
lar, but for controlling a state machine, it has to be an Enum. 

Rename your Enum to something informative like “Launcher State”.  Then, right-click on the 

control and select Advanced ► Customize…  This will open up a copy of the Enum in a new 
window that looks like the front panel of a VI, but you will see that it doesn’t have a block 
diagram.  Before you do anything else, look along the tool ribbon at the top of the VI panel 
and find where it says “Control”.  Press the little arrow to the right and select “Typedef” from 
the drop-down list (see Fig. 2.4).  This is a very important step, and things won’t work right 
if you don’t do it. 

 

FIGURE 2.4  Making a Control into a Type Definition. 

Next, right-click on this new copy of the Enum, and select Edit Items…  This will pop up a 
window in which you can type your five states, as shown in Fig. 2.5.  Click OK to close this 
window, and then save this new control.  You should save it in the same location as you will 
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be saving the Launcher program, and you should probably give it the same name you gave to 
the control when you created it (Launcher State?).  After you have saved the control, close it.  
When you do that, you will get a pop-up message asking if you want to replace the original 
control with the new one.  You can answer yes or no, because the next thing you are going to 
do is discard that original control.  Close the VI that you first dropped the Enum control onto, 
without saving it. 

I’m not going to tell you how to be organized and disciplined in the way you 
save your files.  I’m only going to point out that you will eventually be sorry if 
you are not. 

 

 

FIGURE 2.5  Assigning names to the integers in the Enum. 

Open a new VI and make the front panel look something like Fig. 2.6.  There are two push-
buttons (Boolean controls) and a real indicator.  “Engines” is a Boolean indicator.  I’ve jig-
gered the colors so that the False state is black and the True state is red, and made a whole 
bunch of other font and sizing changes.  You can figure out how to do this kind of thing for 
yourself. 

 

FIGURE 2.6  My front panel for the Launcher.  Yours may look different. 
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Now switch to the block diagram, where we will (finally) begin to build the actual state ma-
chine.  Here are the steps: 

1.  Draw a While Loop.  Make it plenty big:  approximately square, and close to the full 
height of your screen.  This will make for a very “roomy” VI.  Later on, your pro-
grams will be more complex, and you will find value in creating a very compact lay-
out.  (For now, just group the four terminals of the front panel objects together an 
drag them to one side.  We’ll position them later.) 

2. Right-click on the left-hand edge of the loop, and select Add Shift Register…   

3. Right-click on a blank space in the diagram and choose Select a VI…  From the dialog 
that pops up, select the new control you just created (it will have the extension .ctl), 
and wire it as in Fig. 2.7, so that the first state the machine enters is the Ready state. 

 

FIGURE 2.7  Wiring the state control to the shift register. 

4. Grab the terminal for the Abort button and put it inside the While Loop, close to the 
left side.  You are doing this now to help you size things right in the next step.  (As 
you go through the next few steps, you may find it useful to look ahead to Fig. 2.8.)  

5. Draw a Case Structure inside the While Loop, but do not include the Abort terminal 
inside the structure.  The structure should mostly fill the While Loop.  Don’t make it 
so it jams right up to the edge of the loop, but leave a comfortable margin all around.  
The Abort terminal should give you an idea of the right margin size. 

6. Wire the left-hand terminal of the Shift Register to the select terminal of the Case 
Structure.  Watch in awe as it automatically changes from a True/False structure, to 
one with two cases with names that come from your state control variable.  The cases 
of this Case Structure are the states in the state machine! 

7. Make sure the case that is showing is not the default state.  Right-click on the name of 
the case (probably “Countdown”), and select Delete This Case.  This may seem crazy, 
but it is a trick to save you time.  For now, your case structure should only have one 
case, the Ready case. 

8. Refer back to Fig. 2.2.  We need to convert the flow diagram for the Ready state into 
actual code.  The first thing that happens is a True/False decision based on the Abort 
button.  So draw a case structure inside the Ready case, and wire the Abort terminal 
to its selector.  If you look at the flow diagram, you will see that everything that hap-
pens in this state is “under” this case, so it should pretty much fill the Ready case. 

9. Make sure the True case is showing in the structure you just wired to the Abort termi-
nal.  Put a copy of your state control inside this case.  The easiest way to do this is to 
“control-drag-copy” the one you added to the diagram back in Step 3.  Hold down the 
Control key, click on the existing control, and drag it to make a copy.  Then click on 
the little down arrow on the control and select the Abort case.   

10. Wire the control to the shift register as shown in Fig.  2.8.  Note the tunnel that ap-
pears as a white square.  This is an error (which we will fix in a moment).  It is telling 
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you that you have not wired to this output in every case.  You must provide a valid 
output for every case in order for the program to run.  Note the 100 ms delay, which 
every program that waits for human input should have! 

 

FIGURE 2.8  Wiring the Ready state to handle the Abort button being 
pressed. 

11. Switch the inner case to the False value (Abort button not pressed), and wire it as 
shown in Fig. 2.9.  The constant loads the Count variable with the number of seconds 
we will count down for.  Note that some of the output tunnels that the orange wire 

passes through have a little white dot in the center.  These have been set to Use De-

fault If Unwired (via a right-click, of course).  NEVER do that with the tunnels con-
nected to the state control shift register! You always want to be controlling what state 
the program goes to next. 

 

FIGURE 2.9  Wiring the Ready state to handle the Launch button being 
pressed. 
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12. In this step we will do no programming, but pause to reflect on what the program is 
going to do.  The While Loop will run continuously (until the Abort button is pressed, 
but we haven’t written that code yet).  On each iteration, the loop will take the value 
of the state control (stored in the shift register), and apply it to the main Case Struc-
ture.  The Case Structure will then switch to that case, and execute the code in that 
case.  That code will always include a copy of the state control variable that is wired 
out to the right-hand terminal of the shift register.   In other word, the executing code 
in the present state determines what case/state will be executed on the next iteration 
of the While Loop.  If you look back over the last few steps, you can see that we have 
written code in which the Ready state will force either the Abort state or the Count-
down state to be executed on the next iteration of the While Loop. 

13. If you refer to flow diagram, you will see that we have not yet coded the case where 
neither button is pressed and the state machine just returns to the Ready state.  Do that 
now.  (Note the lack of instructions.  You have to figure this one out yourself.) 

14. Right-click on the word “Ready” on the main case structure and select Duplicate 

Case.  This will create the Countdown state for  you, mostly drawn. 
15. Duplicating the case created a copy of the Launch button (called Launch 2).  This is a 

typical penalty you have to pay for using this shortcut.  Simply delete Launch 2 now. 
16. Set the innermost Case Structure to show the False case and wire it to look like Fig. 

2.10.  Now, instead of reading the value of the Launch button, we are checking to see 
if the count has reached zero.  If it has not, then we decrement the counter by 1 and 
return to the Countdown state.  Note the new timer which makes the state last for a 
full second (so that we are counting down by seconds, as is traditional when launch-
ing rockets). 

 

FIGURE 2.10  Wiring the Countodown state to check if we have counted 
all the way down. 

17. If the count is  equal to zero (True on the innermost case), then we should load the 
Count wire with 5 (because we will fire the engines only for five seconds), and transi-
tion to the Fire state.  I will leave you to figure that code out for yourself. 
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18. Choose Duplicate Case again to create the Fire state as copy of the Countdown state.  
This time we don’t make pesky copies of controls that need to be deleted. 

19. Here we want to stay in the Fire state if the count is not yet zero.  If it is zero, we 
want to go to the Engine Stop case.  And when we do, we don’t need to load any new 
value into the Count.  Make it so. 

20. Of course, you need to actually fire the engines.  The terminal for that indicator has 
been left sitting around outside the loop.  Now you need to bring it inside and wire it 
up in such a way that it gets the value True when the engines are firing, and the value 
false otherwise.  Figure out how.  (Hint:  Default If Unwired.) 

21. Duplicate Case again to create the Engine Stop case.  Now we no longer look at the 
Abort button, so select the case structure that reads it, and delete it.  This wipes out 
the entire contents of the case. 

22. This case only needs to set Engines to False, and transition to the Ready state.  Go 
ahead and write that code yourself. 

23. Duplicate Case one last time to create the Abort case.  All this case needs to do is 
send a True value to the While Loop conditional terminal (without catching Broken 
Arrow Syndrome!).  Since we are stopping the loop, there will not be a next state.  
But we still have to wire something to the state control tunnel or the program won’t 
run.  Wire a copy of the state control with the value set to Abort.  Once you make that 
last connection, you should no longer have a broken arrow and the program should be 
ready for testing. 

Test the program.  Does it work?  Do the Engines come on when you think they should?  
(Hint:  the 1 second delay in the Countdown and Fire states probably should not be placed 
identically.)  Fix everything until you are satisfied that you have done a professional job and 
would not be embarrassed to show your program in public. 

Exercise E9:  Replace the feedback node in the Launcher example with a shift register. 

Adding a Timeout 

Unfortunately, our little rocket launcher is a somewhat artificial example, but that is the na-
ture of the beast.  In fact, in the next bit, we’re going to make it even more artificial, so that 
we can discuss an essential element of robot design.  I have mentioned several times that of-
ten a state’s main, or even only function is to wait for something to happen.  If you look at 
the Ready state in our rocket launcher, it is a state that waits only for a button to be pressed.  
But what if the thing you are waiting for never happens?   

To make the question more concrete, consider a robot that shoots things (a fairly popular 
FRC robot task).  You might have a belt system that delivers the thing to the shooter mecha-
nism, and a sensor that detects the passage of the thing from the belt to the shooter.  The pro-
gram might have a state called Run The Belt.  The robot stays in this state until the sensor 
detects the thing has been shot, and then goes to another state, allowing whatever needs to 
happen next to happen.  Now suppose the thing jams, or the belt comes loose, and the detec-
tor never trips. Then the robot is stuck in this state until the end of the match.  You need an 
out:  some kind of mechanism that ends the state anyway, and allows you to do something 
else with the robot. 
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In our example, if you start the program, and then go eat lunch, the program will simply sit 
there patiently, waiting for you to come back and press a button.  Let’s make the program 
impatient.  If the user hasn’t hit either the Launch button or the Abort button within 10 sec-
onds, the program will “time out.”  Since we are going to modify our code, the first thing we 
should do is update our documentation.  Fig. 11 shows an updated flow chart for the Ready 
state.  Now this state checks to see if a timeout has occurred before it checks the buttons. 

 

FIGURE 2.11  Flow chart for the Ready state with a time out. 

The rest of this example will proceed assuming you have completed Problem 1.13.  If you 
haven’t, go back and do that now.  Then you can come back here and finish. 

1. On your block diagram, right-click on any of the copies of your state control and se-

lect Open Type Def.  When that opens up, right-click on the control itself and select 

Edit Items… 
2. Add a new state named Timeout to the list.  You can add it at the end of the list, or 

you can insert it somewhere in the middle of the list.  When you are done, save the 
control and close the window that popped up.  If you check, you will see that the new 
state is present in every copy of the state control (because we made it a Type Defini-
tion, way back when we created it). 

3. Modify your Ready state to match Fig. 2.12.  There is a new case structure that en-
closes the one that reads the Abort button.  I’m showing the other case (which you 
should make sure is the True case!).  The False case contains the code you wrote be-

fore.  Note the use of the Use Default If Unwired tunnel on the way out of the case 
structure.  

4. What is going on?  When the program starts, it reads the millisecond clock, and stores 
that value in the shift register.  Your Timeout VI reads the millisecond clock every it-
eration of the loop.  If the difference between the current reading and the stored read-
ing exceeds 10,000 ms, the state machine transitions to the Timeout state.  This state 
is used to tidy up whatever loose ends need to be tidied up before returning to normal 
operations.  In our example, there’s nothing to do.  

5. We’re sending the state machine to the Timeout state, so that state better exist.  
Switch the case structure so the Engine Stop case is showing, and duplicate this case.  
It will automagically be named Timeout.  Change the state control so that the ma-
chine is sent to the Abort state next. 
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FIGURE 2.12  The Ready state with a timeout test added. 

6. We have one last step.  The Engine Stop state transitions to the Ready state.  When 
we do that, we want to re-start the 10 second timeout.  So read the millisecond clock 
and feed that new value to the shift register, as shown in Fig. 2.13. 

If you think about it, I’ve now shown you two methods to get a state machine out of trouble:  
use of a timeout, and the use of a manually pressed abort button.  Both are available to you as 
you design your robot.  The abort button has immediate effect (or can have, see Prob. 2.1), 
but the operator has to remember to press it.  The timeout is automatic, but not immediate.  
Each approach will have its place.  A third approach is the use of a “dead man switch” where 
you stay in a state only as long as a button is held down, which has some of the advantages of 
both. 

 

FIGURE 2.13  The Engine Stop state with a reset of the 10 second timeout. 

Delays 

If you play with the Rocket Launcher example, you will notice that the Abort button is unsat-
isfactory.  There is a delay of up to a second before the countdown stops or the engines shut 
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off.  This is an important problem to be solved.  It’s not important for our little example, be-
cause our little example is not important.  But you may have a situation where some aspect of 
your competition robot code needs to delay for, say, a second.  If you put in that delay like 
we have done here (as in Fig. 2.14), you will have a problem.  All of your code will hang, 
including the code that lets the driver control the robot, until this blocking call completes.  If 
the driver happens to have the robot going at full speed when the delay starts, it will keep go-
ing at that full speed (with no steering possible) for the full second of the delay.  Exactly why 
this will happen won’t be clear to you until we’ve discussed the guts of the FRC Robot 
Framework, so just trust me that it will.  (OK.  So that was a lie.  Your robot won’t keep go-
ing for a full second.  There is a safety system that will disable your robot.  The end effect is 
the same for you, though.  You won’t gain control of your robot until your delay has 
elapsed.) 

 

FIGURE 2.14  The millisecond delay timer is a blocking call.  No structure 
containing it can complete until the timer expires. 

So, let’s modify the Rocket Launcher so our one-second delays are implemented in a “nice” 
way.  This may strike you as a non-trivial modification, and indeed, it can get a little com-
plex.  But it is important.  So we start with new flow charts, as in Fig. 15.  To implement 
these diagrams, open up your Rocket Launcher and follow these steps: 

1. Add a Shift Register, and load it with the millisecond clock as the state machine tran-
sitions from the Ready state to the Countdown state, as in Fig. 2.16.  Note the use of 
Use Default if Unwired tunnels. 

2. Switch to the Countdown state.  You will need more space inside the innermost case 
structure.  A quick way to get this is to hold down the control key, and drag a rectan-
gle where you want the extra space to appear.  LabVIEW will expand your diagram to 
clear that rectangle.  Be aware that it is doing this to all layers of your program, so 
you may have some cleaning up to do afterwards.  (I usually stretch things by hand 
when I know the control-drag method will affect a lot of things I can’t see.) 

       

FIGURE 2.15  New flow charts for the Countdown and Fire states. 
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3. Use the Timeout VI you made earlier, and a new, innermost case structure to give the 
code shown in Fig. 2.17.  The case showing is what we do when the 1 second timeout 
has expired:  we decrement Count by 1, and stay in the Countdown state. 

 

 

FIGURE 2.16  The Ready state showing the new Shift Register being load-
ed with the current time. 

4. Fig. 2.18 shows the other case:  what we do when the timer has not yet expired.  We 
remain in the Countdown state, but we don’t decrement Count.  Instead we just pass 
the input through to the output. 

 

 

FIGURE 2.17  The Countdown state showing the code to handle expiration 
of the 1 second timeout. 

5. Now consider the case that executes when Count reaches zero.  Fig. 2.19 shows just 
that case structure with the True case visible.  Note that we need the timer one more 
time, because we have to mark off the “zero” second in the countdown.  So, to go 
with the Timeout VI, there is again a new, innermost case structure. The True case 
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showing corresponds to the 1 second timer expiring.  We set the Engines Boolean to 
True, reload our timing shift register with a new start time (because we will be using 
the same delay in Fire), load the value 5 into Count, and transition to the Fire state.  
The False case (not shown) does nothing but keep us in the Countdown state.  We 
don’t need to keep track of the value of Count, because we are just leaving it at zero 
until the 1 second timer expires. 

6. Modify the Fire state in the same way we modified Countdown in Steps 3 and 4.  You 
don’t need the extra second (the one added in Step 5). 

    

 FIGURE 2.18 FIGURE 2.19 

That’s it!  If you’ve done it right, the Abort button should work instantly (or within 100 ms, 
which is near enough to instant). 

Problems 

Problem 2.1 – I have claimed that a While Loop that waits for human input should have a 
100 ms delay so as to free up the CPU for other tasks.  Write a program to test your reaction 
time.  It should, of course, use a state machine.  There should be a “Go” button, a random 
delay of some length (with a minimum delay of a second or two) and then a visual signal.  
The program should report how long (in milliseconds) it took the user to press a button in 
response to the signal.  The machine should automatically reset to the state where it waits for 
the “Go” button. 

Problem 2.2  – Modify your solution to Problem 2.1 so that you accumulate and display a 
histogram of reaction times. 

Problem 2.3  –  Build a state machine that mimics the performance of a robot action for 3 
seconds.  The action could be anything:  running a motor, or closing a gripper.  For this pro-
gram, the “action” will be turning a front panel Boolean indicator True for 3 seconds.  The 
action should be initiated by a front panel button press (modeling the pressing of a button on 
a robot joystick controller.  The action should complete only once for a single button press, 
no matter how long the button is held.  In order to trigger the action again, the operator needs 
to release the button and then re-press it. 

Problem 2.4  –  Build a state machine the mimics the performance of a robot action com-
pletely under operator control.  As in the last problem, the “action” is setting a front panel 
Boolean indicator True.  The indicator should remain True for as long as a front panel button 
is pressed, and should go False within 100 ms of that button being released. 
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The next three problems deal with the simulation of a machine that dispenses Drool Cola.  
A can of Drool costs $1.25.  The machine accepts nickels, dimes, quarters and dollars.  It has 
a display that shows how much money has been input, and can also display other messages.  
For example, it displays a message indicating that it has enough money for a purchase, or the 
amount of change due, or the amount being returned if the user hits the cancel button.  If the 
user inputs some money, but then does nothing else, after 30 seconds the machine gives up 
and returns the money.  When there is no action, the display might have a message that tries 
to entice passerby into purchasing a Drool. 

Problem 2.5 – Design the state diagram for a soda machine to dispense Drool Cola.  Hint:  
this machine is cyclical:  it starts out in a waiting state, and returns to that state.  If your state 
diagram has a generally circular layout, it will be clean and easy to read. 

Problem 2.6 – Draw flow diagrams for each state of your Drool Cola state machine. 

Problem 2.7 – Code your Drool Cola machine.   
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Chapter 3 — Introduction to the cRIO 
It is difficult to discuss programming an FRC robot without some discussion of the hardware.  
At the same time, this book is about software, not hardware.  So I am going to do the mini-
mum here, and assume that I can talk about, for example, encoders without going into the 
details of how you hook one up.  (In Chapter 5, when we discuss programming for individual 
devices, I’ll point you to where you can find examples that include connection instructions.)   

The overall hardware scheme for an FRC robot is shown in Fig. 3.1.  Your code runs on the 
cRIO (shown in Fig. 3.2), which is a very small computer built into a chassis.  (cRIO is not 
an invitation to visit Brazil, but stands for “compact real-time input/output”, which says a lot, 
or very little, depending on your point of view.)  The slots in the chassis accept a wide range 
of plug-in modules from National Instruments.  In FRC, we use only one for digital input and  
output, one for analog inputs, and one to drive relays. 

 

FIGURE 3.1  Schematic diagram of an FRC robot control system. 

The cRIO is connected by a cable to a wireless access point (commonly called a WiFi router, 
or just “the radio”).  You will both program and control the robot through this communica-
tion link, which can be made either by WiFi or a direct cable connection.  (At a competition, 
only actively competing robots get to use WiFi.  All your programming changes and runs on 
the practice field have to be done via a cable, so be sure to own a long one.) 

 

(a) (b) 

FIGURE 3.2  (a) The cRIO.  An earlier version has eight slots, two Ethernet 
ports, and some other extras.  In (b) you can see Rio. 
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In addition to the code you write for the cRIO, there are several other software components, 
some of which you will need to write, while other parts are already written for you.  Fig. 3.3 
is the counterpart to Fig. 3.1, but for the software scheme.  Notice that your code is not some 
independent unit, but resides inside something called the FRC Robot Framework.   

As it turns out, actually programming a robot from zero is an enormous task—too big for an 
FRC build season, or even a full year of effort.  Fortunately, the heavy lifting has been done 
for you by the FIRST Robotics Resource Center at Worcester Polytechnic Institute, in col-
laboration with National Instruments.  Their Framework consists of both a high-level archi-
tecture, and a large number of low-level subroutines (Vis).  Your code will be written as an 
intermediate layer:  you will write VIs that use the low-level routines, but are in turn called 
by the high-level architecture.  I have never met any of the people behind the Framework, but 
I’m extremely grateful for all their effort, and you should be too. Because of the Framework, 
you get to focus on solving the problem posed by the competition, rather than worrying about 
how to read a USB port, interpret the data as a joystick position, and somehow get that data 
over the WiFi and into your program. 

 

FIGURE 3.3  The FRC Robotics software scheme. 

Note that the FRC Driver Station communicates bi-directionally with the Robot Framework, 
but only uni-directionally and with your code.  This allows you to display some very basic, 
pre-determined diagnostic data without writing a custom Dashboard.  As that remark implies, 
FRC LabVIEW includes a default Dashboard that you can use if you don’t need to do any-
thing fancy.  If, on the other hand, you need to do image processing or other serious compu-
tation, you can use that default code as a starting point and build your own Dashboard.  
(Dashboard use and programming are covered in Chapter 8.)  In Fig. 3.1, you will notice that 
the camera is connected to the radio.  Images from the camera are beamed directly to your 
laptop so you can process and/or display them on the Dashboard without involving the cRIO, 
which does not have the horsepower to both run the robot and do serious number crunching.   

LabVIEW Projects 

Your robot’s program will be big.  You will write at least several VIs, and the Framework 
itself includes hundreds of subroutines.  In order to assemble all this stuff into a working 
program and get it loaded onto your robot requires some serious organization.  LabVIEW’s 
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mechanism for this is the “project”, and the associated project file, which would be named, 
e.g. MyBigProject.lvproj. 

If your version of Windows is not displaying file extensions, then you will not 
be able to tell the difference between MyRobot.vi and MyRobot.lvproj.  You 
should fix that now.  If you don’t know how, find someone who can show you. 

As usual, the best way to learn is by doing.  If your copy of LabVIEW is not currently run-
ning, start it now.  If it is running, close all your open VIs so that you go back to the start 

screen (Fig. 1.1).  Under New, click on FRC cRIO Robot Project, which should bring up a 
window as shown in Fig. 3.4. 

 

FIGURE 3.4  The Create New FRC Robot Project window. 

Now that the window has popped up, you have three things to do. 

1. Give your project a sensible name.  This will be the file name on the hard drive, so 
pick something meaningful and comprehensible.  For now, “Practice Project” might 
be a good choice.  Later on, you might have a name that makes it clear that this is the  
project for your competition robot. 

2. Choose a location for the project.  This one is non-trivial if you have plans for more 
than one person to work on the code, and they won’t all be doing it on the same com-
puter.  I’ve developed a strategy that works for me and the team I work with, but it 
might not be right for you.  For a practice project, there is no problem accepting the 
default, but put some thought into how to share code across multiple users before 
build season starts. 

3. Enter your cRIO IP address.  If your team is FRC number 1234, then replace the xx 
with 12 and the yy with 34.  I am going to assume that you have somehow learned—
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although not from me—how to set up all your IP addresses, image your cRIO, etc.  
(This sort of information can be found on the FIRST web site.) 
 

4. (There is a Monty Python joke lurking here.)  Choose the type of drive train you 
want.  Your choice doesn’t matter as you can change it later.  For the purposes of this 
book, choose a “hardware only” option as we will not be discussing the LabVIEW 
simulation feature at all. 

When you’ve finished these tasks, LabVIEW will grind away for a while and eventually pro-
duce a “project tree” like the one shown in Fig. 3.5.  Your window won’t look exactly like 
mine because I’ve opened several of the folders so we can see and discuss what’s inside. 

 

FIGURE 3.5  The project tree for the Robot Framework. 

The first thing to note is that the directory (folder) structure you see is entirely virtual.  If you 
go to the directory you specified for the project, you will see that there are no sub-folders.  
All the files are just dumped together in the main project folder.  You might be tempted to 
impose some organization on this mess, but you should resist that thought.  There are ad-
vantages to having all the files in one folder, and you can impose all the organization you 
need through the tree. 

Not only is the organization virtual, but the “files” in the tree are virtual too.  They are 

shortcuts.  If you right-click on one of the VIs, you will see that Remove from Project is an 

option, but not Delete.  Removing a file from the project leaves it on the hard drive, which is 
nice if you decide you needed it after all.  
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You can create new folders, delete them, drag VIs from one folder to another, rearrange their 
order, and stuff like that.  You can add existing VIs to the project, and it doesn’t matter what 
folder those VIs are actually sitting in (although I highly recommend that you place any VIs 
you create for your robot in the project folder with the Robot Framework).  It is also the case 
that any sub-VIs that you create do not actually have to appear in this tree.  If the main pro-
gram that calls these routines is in the tree, they will automatically be included when the code 
is compiled.  On the other hand, any code that will serve as a “main” program running on the 
cRIO must appear in the tree. 

If you look carefully at Fig. 3.5, you will see that the tree is divided into two sections:  “My 
Computer” and “RT CompactRIO Target”.  This is telling you where the code will run.  Or-
dinarily, you will not have any VIs under My Computer.  You will likely want to have some 
code that runs on your laptop during a competition, but it will be part of the Dashboard pro-
ject, not the robot project.  On the other hand, if you are working stuff out (doing simulations 
of your robot, or calculating ball trajectories or something), you may find it convenient to 
include these files in the project and run them from the tree.  Just be aware that the robot 
code cannot call any of these VIs.  To start development of a new program in either category, 

right-click on e.g., “RT Compact RIO Target” and select New ► VI. 

If you forgot to set the IP address that matches your team number, or want to change it for 

any reason, you can right click on “RT Compact RIO Target” and select Properties. 

Running Programs on the cRIO 

There are two ways to run programs on the cRIO, corresponding to two types of memory 
available, EPROM and DRAM.  The EPROM (electrically programmable read-only 
memory; the type in use today is known as “flash” memory) is used for competition code.  A 
program written there is “permanent” in the sense that when you cycle the power on the 
cRIO, the program remains in memory, and can be run again without downloading.  We’ll 
defer discussion of how to do that to the next chapter. 

The other way to run a program is in DRAM (dynamic random access memory), where the 
code remains only as long as you don’t turn off the cRIO, reboot it, or lose communication 
between the cRIO and your laptop/driver station (which happens a lot more often than you’d 
like).  The advantage here is that the front panel of the program remains active on your laptop 
even as the code itself runs on the cRIO.  This can be a tremendous help in getting your robot 
to work, tuned up, and your software debugged.  It also allows you to write small test pro-
grams that just do one or two things, which can be a very nice way to solve a particular prob-
lem without having to work with the entire Robot Framework.  In particular, I find it very 
useful to look at graphs of sensor readings.  Code that has been “Deployed” to the cRIO (is 
running from EPROM) does not show you a front panel.  If there are things that you need to 
see, you can design their display into your Dashboard, but that’s not a five minute job… 

As an example, we’ll build and run a little program that I find useful to have on hand.  It will 
quickly show you what names the FRC system is assigning to the buttons and other controls 
on your joystick (or game controller, or whatever you are using).  So…start a new VI.  (You 
might consider creating a new folder in your project tree called “Test Programs” to store it 
in.)  Draw the program shown in Fig. 3.6.  In order to do this, you will need to use VIs from 
WPI.  But first, turn so that you are facing in the direction of Worcester, Massachusetts 
(prounounced wuss-ter, blame the British), and make a mental note of thanks. 
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If you look back at Fig. 1.8, you will see that the last item, way down at the bottom of the 

block diagram context menu, is WPI Robotics Library.  Select that and pin the palette that 
you get.  You really want to spend some quality time exploring here.  Everything your robot 
actually does, be it run a motor, read an encoder, or operate a pneumatic cylinder, you will do 
through subroutines here. 

For now, though, we just want the Joystick palette.  It is a sub-palette under either Ro-

botDrive or DriverStation.  There you will find both the Open and Get routines shown in 
Fig. 3.6.  Create the controls (the constant that selects USB 1) and indicators (Buttons and 
Axes) by right-click-creating on the VI terminals.  Your program will not work if you do not 
establish communication with the Driver Station, so you need the little Start COM routine 
(found on the DriverStation palette).  This routine runs in parallel with the While Loop, so 
make sure you place it outside that loop.  Be sure to save your program.   

Once you start messing with the WPI library, you will start to be asked if you 
want to save changes to VIs you have never heard of and whose function you 
have no idea about.  This will happen when you close VIs or when you close 
down LabVIEW.  Just say “Yes” to all of these requests.  Unless a VI in the li-
brary has been re-worked recently, LabVIEW is likely to understand it as having 

been written in an “old” version, and wants to know if it’s OK to save it in the “new” ver-
sion.  Over time, you will get fewer and fewer of these requests, but they will never go away. 

 

FIGURE 3.6  A simple test program to display joystick control values. 

Now we come to the unavoidable.  To go any further, you need to be connected to a cRIO.  
I’m going to assume that you have one.  If you need help on configuring your setup, look on 

your hard drive for something like C:\Program Files\National Instruments\LabVIEW 

20xx\manuals\FRC Programming Guide\index.html.  Of course, “xx” will be the year of 
your LabVIEW version, not actually “xx”.  There’s other good stuff here, so it’s worth a 
look.  You also need to have a joystick or other gaming controller plugged into your laptop.  
If you are running Windows 7, you need to have administrator privileges. 
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1. Start the FRC Driver Station, if you haven’t already.  There should be a shortcut on 

your Desktop, but if not, you can find it in C:\Program Files\FRC Driver Station.  
Launching the Driver Station will also launch the default Dashboard.  You can close 
that, as it won’t actually be getting any data.  (If your Driver Station is locked in the 
lower left corner of your screen, use the Window Mode control—in the middle of the 
Driver Station panel—to show both the Driver Station and the Dashboard as floating 
windows.  Then you can close the Dashboard.)  If you are connected to the cRIO, the 
Communications indicator should be green (see Fig. 3.7).   

2. Click on the “Diagnostics” tab.  Look at the list of USB Devices for a green LED in-
dicator.  If you have more than one device plugged in, there should be more than one 
indicator lit.  Press any button on the joystick you will be using for this test.  The in-
dicator for that joystick should turn blue. 

3. If the joystick you are testing was not Joystick 1, click on the “Setup” tab.  At the 
right you should see a list of the USB controllers plugged into your laptop.  You can 
re-arrange this list by clicking on a controller name and dragging it to the position 
you want.  Drag your test controller to the top of the list so that it is Joystick 1. (Al-
ternatively, you could change the code to make the USB port selection on Open Joy-
stick match the position of the controller you want to test.)  

 

FIGURE 3.7  The FRC driver station showing the Operation tab.  At the left you 
can see the green LED indicating communication with the robot, and the red one 
indicating that we haven’t loaded any code yet. 

4. Save your code. 
5. Click the white “Run” arrow on your Joystick Info VI.  This will cause it to be com-

piled and downloaded to the cRIO.  You will get a pop-up window that starts out 
looking like Fig. 3.8.  You may be asked to save a lot of VIs you have never heard of.  
Just agree to save them.  Sometimes this process will fail, but then work fine when 
you try it again.  Sometimes you will have to cycle the power on the cRIO and radio 
before it will work.  An alternative strategy to isolate where a communication prob-
lem lies is to use a cable direct from your laptop to the radio/router, or to the cRIO it-
self.  If you have an older cRIO with two Ethernet ports, you must plug your laptop 
into Port 1. 

6. When the download completes, the Robot Code LED should be green and your VI 
should be running.  Press buttons and move joysticks to see the response on the front 
panel. 
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FIGURE 3.8  The deployment pop-up window. 

If your cRIO is on an actual robot, with motors and controllers all wired up, you could make 
yourself a little test program for driving.  Fig. 3.9 shows a very simple program to drive a 
robot using a PS2-style USB game controller.  You can see that not very much code is re-
quired if all you need to do is make something that drives. 

 

FIGURE 3.9  An example of simple driving code. 

 

Before we move on to the Robot Framework, it is worth emphasizing again how useful this 
mode of running a program is for debugging and testing.  Fig. 3.10 shows the front panel of a 
test program used to tune the control loop for a motor (that was part of a ball shooting mech-
anism).  It’s too small to actually read anything, but the point of the figure is the graphs.  You 
can show things in a visual manner that really lets you figure out what is going on. 

Bear in mind that your actual competition VIs can have diagnostic front panels too.  You 
can’t run them with the panel showing at a competition, but you can run them this way at 
home, and get a good handle on what is and is not working.  
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FIGURE 3.10  An example of a test program with charts.  Big charts.  This is a 
real program used to tune the turret aiming on our 2012 Rebound Rumble robot. 
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Chapter 4 — The Robot Framework 
Have a quick glance back at Fig. 3.5, which shows the project tree for the Robot Framework.  
In this chapter we will explore in detail the key elements of this framework.  They are Robot 
Main, the “top” VI that calls everything else, and four others:  Begin, Periodic Tasks, Auton-
omous Independent, and Teleop.  There are a few minor players to discuss as well, and also 
some new concepts, such as Global Variables.  Finally, we’ll spend a bit more time with the 
Driver Station.  The VIs in this tree have been “written” for you, which is to say, they have 
some code to give you examples to look at, but you will discard most of this “boiler plate” in 
favor of your own programs.  The key thing is that here you don’t start new VIs from scratch, 
but edit existing ones (except, of course, that being a wise and experienced programmer, you 
will organize your code using sub-VIs, and those you will start from scratch). 

Before we begin, one word of warning:  this book was written using a particular version of 
the Framework, but a new version is released, with modifications and tweaks, every year.  So 
what you see in the latest version might not exactly match the descriptions here.  A certain 
amount of intellectual flexibility will serve you well in that case. 

Robot Main 

In case you can’t tell by its special status in the Framework tree, Robot Main is the VI.  It 
controls everything and calls (directly or indirectly) all the other VIs.  If you want to run your 
program in RAM (which you will do often while first developing it), you click the white ar-
row on this VI and no other.  Paradoxically, you will do only a minimal amount of coding 
here.   Robot Main controls everything, but does almost nothing. All the heavy lifting is done 
in the VIs that it calls. 

The first thing to notice is that what you are looking at in Fig. 4.1 is mainly a state machine.  
The state is determined by the Driver Station Get Mode VI (which we will not mess with!) 
which gets its marching orders from the Driver Station.  In a competition, the Driver Station 
gets the mode from the FRC field controls.  At home, you can set up the Driver Station to put 
the robot in whatever mode you prefer.  There are six states:  Autonomous Enabled, Teleop 
Enabled, Test (both Enabled and Disabled), Disabled (for Auton and Teleop), Timeout, and 
Finish.  We won’t talk much about the last two.  Finish never runs.  Well, not true.  If you 
press the Finish button on the front panel of Robot Main while it is running, then the Finish 
VI will run.  At a competition, the robot goes directly to the Disabled state at the end of the 
match.  The Timeout state only runs if there is a communication problem with the Driver Sta-
tion.  If you look, you will see there is no code in the state.  If you were having ongoing 
communication problems, you could put some diagnostic code in here to maybe figure out 
what’s going on.  

The operation and timing of this state machine is controlled by the Driver Station.  Every 20 
milliseconds a fresh data packet arrives from the Driver Station, and is put into a cache by the 
Robot Start Communication VI (which we first encountered in Chapter 3).  Robot Start 
Communication signals Get Mode (via the thin green wire connected to the funny circle 
within a square symbol) that there is fresh data in the cache.  Get Mode has been paused, 
waiting for that signal.  When it arrives, Get Mode reads the cache, and selects which case in 
Robot Main will run next.  Get Mode also has two other outputs, which can be useful, but are 
not essential.  We’ll discuss those when we talk about Teleop in a bit.  You should also note 
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that although the state machine is designed to loop at the Driver Station data rate (every 
20 ms), you can slow it way down with your Teleop code, and potentially make problems for 
yourself.  More on this topic when we discuss Teleop.   

Outside the While Loop of the state machine, there’s a bunch of other stuff.  The obviously 
named Begin is the first VI to run.  In here you will set up all your motors and sensors.  This 
VI contains no loops.  All its code executes once and is done.   Note the use of the Error out-
put from Begin to ensure that the other VI’s and the state machine only start once Begin has 
completed.  We used a trick like this back in Fig. 1.16.  There are three VIs running parallel 
that are called here.  NT Server is required to sending data to and from the Dashboard.  Leave 
it alone.  We will discuss Periodic Tasks (whose icon says Timed Tasks) later.  If you are not 
planning on doing any image processing on the cRIO (and you most likely shouldn’t), then 
you should delete the call to the Vision VI from Robot Main.  Even if Enable Vision is set to 
False, this VI continues to read images from the camera, consuming bandwidth and CPU cy-
cles.  But is if you do have some reason to image process on the cRIO instead of on your lap-
top, then you need to modify Vision Processing.vi to include your routines. 

 

FIGURE 4.1  The “as provided” Robot Main VI. 
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Finally, there are two remaining items:  objects of a type we have not seen before labeled 
“Test” and “Auto Indep”.  The first is part of the robot Test Mode, which we will not discuss 
until Chapter 8.  The second has to do with how your Autonomous code gets started and 
stopped, which we will discuss a bit later in this chapter.   

Before we examine the individual sub-VIs in detail, let me make a few recommendations.  I 
like to clean up the default robot code to get rid of stuff I know I’ll never use.  Unless you 
have some very special reason to do so, you will not be using the cRIO for image processing.  
Delete the Vision Processing VI from the diagram for Robot Main.  Then you can delete the 
Enable Vision and Image Size controls and the objects they are wired to.  That will break the 
local variable wired as an input to Begin.vi, so delete it as well.      

Begin 

It is always best to begin at the beginning, or so they say.  Fig. 4.2 shows the default code 
provided with the Robot Framework.  I’ve drawn a box around the code for setting up the 
camera. You should just delete this code.  You can accomplish the same thing from the 
Dashboard, where you can, in fact, change the camera settings “on the fly” to compensate for 
the actual field conditions.  Don’t get carried away and delete the “error out” indicator, even 
though it will no longer be connected to anything.  It’s connected outside the VI (in Robot 
Main), and used to make sure no other VIs start executing before Begin finishes. 

The rest of the code shows the setting up of a pair of motors, and of a joystick.  This is al-
most certainly not exactly what you want for your robot, but it shows the idea.  You “open” 
everything in here:  motors, joysticks, encoders, gyros, and what have you, and you wire the 
reference output of that Open VI to the reference input of an object with the name 
“WPI_SomethingRefNum Registry Set.vi”.  The “something” will tell you that it is a refer-
ence to, for example, an encoder.  What is happening here is that setting up the motor (or  

 

FIGURE 4.2  The default Begin code.  Delete the code inside the dashed lines 
unless you have good reason not to. 

whatever) creates a cluster of information about how this device is configured.  This infor-
mation is stored in an object called a Functional Global, together with a unique name that 
you provide.  This information is then available in other VIs, using this name that you pro-
vided, and without having to draw a wire from the Begin VI to all the other VIs that actually 
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use this device.  I’m not going to talk any more about Functional Globals and how they work, 
but they are quite generally useful, and now that you know what they are called, you can 
learn more about them from The Intertubes. 

Fig. 4.3 shows a fully configured Begin.vi from Team 1391’s 2012 competition robot.  Don’t 
worry about the details.  We’ll cover those in Chapter 5.  This figure is just here to give you 
an idea of what your own code will look like when you are done.  But there are a couple of 
things to notice.  First, pay attention to how neat it is.  That neatness really helps when you 
need to make a change in a hurry.  Second, if it seems a bit cramped, that is because an effort 
has been made to arrange it so all the code fits on one screen.  That makes it harder to miss 
important things because they happen to be off screen when the VI opens. 

This figure also shows another use for Begin.vi.  This is a good place to set variables that 
need to have a particular value when your Autonomous code starts.  It’s not the only place, 
but it is a handy one.  In this particular example, the variables needed to be set so that the 
code in Periodic Tasks behaved properly when our Autonomous code started. 

 

FIGURE 4.3  An example of the Begin code from a completion robot. 

Periodic Tasks 

There are many things that you may want your robot to do that are not directly linked to the 
action on the field.  For example, you might want to continuously read the encoders on your 
drive train so that you always have the current speed of the robot available.  You might want 
to continuously gather data and send it to your custom dashboard.  You will probably also 
want to receive data back from your custom Dashboard, with the results of processing the 
images from your camera, for example.  None of these activities depend on the actions of the 
team operating the robot, and it makes a great deal of sense to let them happen quietly in the 
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background.  Periodic Tasks (whose icon in Robot Main is labeled Timed Tasks) is the place 
to do it. 

Another good use of Periodic Tasks is PID control of things other than driving.  (PID what?  
See Chapter 6.)  If you need to precisely control the speed of a wheel that is part of a shooter 
mechanism, you would like the loop that does this controlling to run at a smooth and steady 
rate.  Loop timing is slow and can be a bit uncertain in Teleop, so it is better to put the PID 
here.  You can then control its operation from Teleop (or Autonomous).  In fact, since this 
shooter mechanism is likely to be used in both Teleop and Autonomous, putting the PID in 
Periodic Tasks avoids unnecessary duplication of code. 

Fig. 4.4 shows the default code for Periodic Tasks that comes with the Framework, although 
I’ve radically squished it to make a compact figure.  You could discard it all (except for the 
error in control!) and start from scratch, if that makes your life easier. Or, you could stretch 
the loops here to fit your stuff in.  But the code here does illustrate a number of important 
points.  The first of these is that not everything needs to go at the same speed, and you should 
reduce the load on the cRIO by putting things that don’t need to go quickly into a separate, 
slower loop.  Note also that the loops are infinite:  the False value wired to the condition ter-
minal keeps them running until Robot Main is stopped. 

 

FIGURE 4.4  The default code in Periodic Tasks.vi 

A second thing to note is the use of the Reference Get VIs to allow reading of devices set up 
in Begin.vi.  Be sure to put those calls outside your loops.  You don’t need to waste CPU cy-
cles retrieving the device info on every iteration of the loop.  I don’t know why the references 
are wired to the loops via shift registers.  Unless you are planning on modifying the infor-
mation in the references, a simple tunnel is sufficient. 

A third thing shown in the code is the use of the Diagram Disable structure (found on the 
Structures Palette with Loops and Case Structures).  This is how you comment out code in 
LabVIEW.  Inside that is the code to run the compressor, which not everyone uses, so it 
comes disabled by default.  Be careful with Disable structures.  If they cross data wires, 
LabVIEW will automatically do things that result in your code not getting a broken arrow.  
That doesn’t mean your code will actually work as you expect!  Make sure you haven’t bro-
ken some other thing whenever you comment out bits of your code. 

The last important thing Fig. 4.4 shows you is how to communicate between Periodic Tasks 
and the rest of your code.  The example here is the toggling of the User LED on the cRIO.  
Every time the loop executes, the LED changes state (turns off it was on, etc.).  The rate of 
the loop is controlled by a Global Variable, which is the subject of the next section. 
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One thing to be clear on:  Periodic Tasks is called exactly once by Robot Main.  It is up to 
you to make the tasks periodic by putting them inside infinite loops.   You will note that in 
Fig. 4.4, the compressor VI is not inside a loop.  That is because that VI is a loop, and runs 
continuously once it is called.  (If you examine the icon graphics carefully, you will see that 
the outside border tries to look like a While loop.) 

 Robot Global Data 

If you look back at Fig. 3.5, you will see that the project tree for the Framework contains 
something called Robot Global Data.vi.  Open it an you will find a VI with a front panel, but 
no block diagram, as in  Fig. 4.5.  The three objects you see in the figure are global variables.  
They are accessible from any LabVIEW VI running on your cRIO.  In fact, we already met 
two  of them back in Fig.  4.1, and you should refer back to that diagram to get a clear under- 

 

FIGURE 4.5  The default Robot Global Data.vi. 

standing of what is going on.  In that diagram, there are the terminals to two controls, Enable 
Vision and Image Size.  The controls themselves are on the front panel of Robot Main, and 
are entirely local to that VI.  The values of both controls are being written to objects that look 
like local variables, but have a globe instead of a house as a symbol.  These are global varia-
bles, and are simply instances of the two variables with those names shown here in Fig. 4.5.  

If you need more global variables (and you will), simply drop whatever controls and indica-
tors you need onto the front panel of Robot Global Data.vi.  To add a global variable to a VI, 

right-click on the block diagram, choose Select a VI…, and then select Robot Global Data.vi.  
Once you have the variable dropped, click on it to choose the actual variable you want from 
the pop-up list.  As is the case with everything else, these globals need to be set for reading 
or writing, just like local variables.  Once you have one global in the diagram, the easiest way 
to get more is by the control-drag method.   

Since the globals are accessible from any VI, they provide a natural way to communicate be-
tween Periodic Tasks and Autonomous or Teleop.  For example, you could use a loop in pe-
riodic tasks to continuously read an encoder and put the current value into a global variable.  
When your Teleop routine needs to know that encoder value, it has only to read the global.  
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Or, Teleop could change the setpoing in a PID control loop that is running in Periodic Tasks 
by writing to a global that Periodic Tasks reads. 

Often, particularly in Autonomous, you need numbers that have to be determined by experi-
ment on the practice field.  For example, you may need your robot to move forward for a cer-
tain amount of time at a certain power.  You could, of course, put this number as a constant 
inside your Autonomous code.  But then, if you need to make changes, you need to hunt 
through your code for all the locations where that constant is used.  An alternative is to put 
the value in a global variable, and make the specific number the default value for that varia-

ble.  Just type the number into the variable, right click on the variable, and select Data Oper-

ations ► Make Current Value Default.  Be sure to save Robot Global Data after doing this or 
the default value will be lost.  This strategy puts all your key parameters in one easy to find 
spot. 

Let me emphasize again that “global” means global.  Any VI running on your cRIO can ac-
cess the same variable.  So, for example, you can set a value somewhere in any VI that is 
running on your robot, and read it in any other VI running on your robot, whether that VI was 
called directly as part of Robot Main (like Begin, Teleop, or Periodic Tasks), or is running in 
parallel to Robot Main (like Autonomous, as we shall see shortly). 

Teleop 

In order to understand how Teleop works, you need to understand how Robot Main works.  
Refer back to Fig. 4.1.  Robot Main is a state machine, but unlike the examples we studied in 
Ch. 2, the individual states do not determine the program flow.  Which state executes next is 
controlled exclusively by Get Mode.  On each iteration of the loop, Get Mode is called, and 
waits for a control packet from the Driver Station.  Included in this packet is the state the ro-
bot should be in, which Get Mode outputs to the selection terminal of the case structure.  If 
the mode is Teleop, then the Teleop case is executed.  That case calls your Teleop code, 
which should execute and quickly complete.  “Quickly” here means in well under 100 milli-
seconds.  As discussed above, the Driver Station sends a data packet every 20 ms.  But Get 
Mode cannot read that packet and initiate a new call to your Teleop code until the previous 
call completes!  So in Teleop, the state machine runs at the rate set by the execution time of 
your code, (unless your code completes in under 20 ms).  As we will discuss in more detail 
below, because you are fundamentally in control of the timing here, it is possible to cause 
yourself some real trouble.  The sober recommendation is that you not do that.  (And a detail 
for worriers:  because of the way in which communication is handled, when your code does 
complete and allow Get Mode to run, the data from the Driver Station, including such critical 
things as joystick positions and button presses, is the latest available from the most recently 
arrived Driver Station packet.) 

(Very) Basic Teleop Code 

Fig. 4.6 shows the default Teleop code that comes with the Framework.  It’s a bit confusing, 
but the first thing to do is mentally filter out all the VIs that have “SD” in the upper left cor-
ner of their icon.  These VIs send and receive Dashboard data, and can be ignored for now.  
(We’ll discuss them in Chapter 8).  If you apply that mental filter, then there is mainly code 
that reads a joystick and sends the joystick values to a motor drive VI.  
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Notice what there is not:  loops.  This code will execute once, and the VI will terminate.  
That is how the Framework is designed to operate.  All the looping is done by the While 
Loop in Robot Main.  There is a control called Call Context, whose value is controlled by 
Get Mode.  When Robot Main executes, the first time Teleop.vi is called, Call Context  will  
have the  value  “Init”.  On subsequent calls, it will have the value  “Execute”.   In principle, 
it will have the value “Stop” on the last call, but I am not sure that ever happens in real life.  
You can use this input to initialize things on the first call to Teleop if you need to. 

 

FIGURE 4.6  The default Teleop.vi. 

There are a couple of other possibly useful bits in here.  Get Mode passes a cluster containing 
information that can inform your software exactly where it is in the match.  The number of 
seconds that have elapsed in Teleop are brought out by default, but there is other information 
in there as well, which you can discover by dragging the top and bottom edges of the existing 
Un-bundle By Name node.  There is a call to a VI that informs the Driver Station that you are 
running Teleop, so you can see there that the code is actually running on your robot (which 
can be hard to know for sure when you are running in competition mode, as you have no ac-
cess to either the front panel or the block diagram.)  And finally, there is an example of using 
global variables to pass information to Periodic Tasks, in this case the delay which Periodic 
Tasks will use to blink the User LED as an additional way for you to know which piece of 
code is running. 

Writing the Teleop code (together with Periodic Tasks) is the essential thing you will do to 
make your robot competitive.  But don’t do too much of it.  The Driver Station has a Charts 
tab, and one of the things plotted is the percent usage of the CPU on the cRIO.  If your usage 
in Teleop or Autonomous averages much above 60%, your code is doing too much.  Try to 
simplify it.  If CPU usage approaches 100%, your robot is in serious trouble, and you should 
expect it to not work at a competition, even if it seems to work at home. 

Waiting Without Hanging 

Back in Ch. 2 we discussed the importance of delays and their proper implementation.  That 
subject is so important that we going to revisit it here.  Suppose you need to your robot to do 
a specific thing for a set amount of time.  In this example, let’s imagine that it needs to 
squeeze a pneumatic gripper closed for 2 seconds when a button is pressed on a joystick.  We 
don’t want to have to hold the button down, we just want to press it and have the 2 second 
squeeze be automatic.  Don’t do it like Fig. 4.7!  This snippet of code will squeeze the grip-
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per, but your robot will be totally un-drivable for the entire 2 seconds!  The millisecond timer 
is a blocking call.  Teleop.vi can’t complete until the timer completes.  That means it can’t be 
run again to get you new joystick readings, or do anything else. I can’t emphasize enough:  
don’t do it this way. 

 

FIGURE 4.7  How NOT to implement delays!  (The False case is completely blank.) 

Doing it right is a bit more complicated.   One possible way (there are others) to implement 
this delay is shown in Fig. 4.8.  This is not as simple as it could be, because the code is writ-
ten so that the Squeeze button can be released, and our two second squeeze will still operate.  
Also, if the button is re-pressed during the two seconds, the timing does not restart.  (So I’m 
showing you three things at once.  Such a bargain!) 

If the variable Squeeze is False, and the joystick button is not pressed, then we execute the 
False case which is completely blank.  You could remove this outer case structure (and make 
a few other changes), but it would increase the computational overhead (by a small amount).  
You would always be reading a timer and feeding data to the feedback node.  As it is, we re-
ally do nothing until the button is pressed.  When it is pressed, we execute the case shown in 
the figure.  Because Squeeze is still False, we close our gripper, load the millisecond clock 
into the feedback node, and set Squeeze true.  This last step will keep us in the outer True 
case even when the joystick button is no longer being pressed. 

 

FIGURE 4.8  The initial state of a delay code for Teleop. 

On the next call to Teleop, we will execute the code shown in Fig. 4.9.  Now Squeeze is 
True, so we check the time (see Problem 1.13 if you haven’t written your Timeout VI yet), 
and if it has not expired, we do nothing except keep passing our saved start time back into the 
feedback node. 
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FIGURE 4.9  The code that runs after the button is pressed but before 2 seconds 
has elapsed. 

Finally, when 2 seconds have passed, Timeout will be True, and we will execute the code 
shown in Fig. 4.10.  This code releases the gripper and sets Squeeze to False so that we re-
turn to our original state of doing nothing. 

 

FIGURE 4.10  The end of the delay. 

Of course, there are other approaches to button presses, and you should consider them in 
planning how your robot operates.  For example, you could require the Squeeze button to be 
held down for the entire two seconds.  The ultimate duration of the squeeze would still be 
controlled by a timer, but you could abort the squeeze by releasing the button before the two 
seconds are up.  Or, you might want a squeeze that has no timing it at all.  The squeeze per-
sists only as long as the button is held.  Each has its own advantages and disadvantages. 

It may not be obvious, but the bit of code in Figs. 4.8 through 4.10 is a state machine.  It’s 
state diagram is shown in Fig. 4.11.  What’s missing from our usual picture of a state ma-
chine is the While Loop.  That’s because the Robot Framework supplies the loop.  All we 
need to provide is the guts.  So your Teleop code can contain state machines as well.  They 
can be as complicated as your robot requires (but please, no more complicated than that).  
Just remember that you can’t wrap them in While Loops, because that looping is already pro-
vided for you.  Values that need to be kept from one iteration to the next can be stored in 
feedback loops, as I did in the example, or just written into variables.  That’s what I did with 
Squeeze, and if you think about it, I could have done the same thing with the start time.  
(There is never only one way to code something!) 
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FIGURE 4.11  The state diagram for the gripper squeeze example. 

Avoiding a Death Spiral 

In order for you to write code that makes your robot behave as you expect, it turns out that 
you need a pretty good understanding of how the robot acquires and uses the control inputs.  
The ultimate pace setter is the Driver Station running on your laptop.   That is, after all, 
where your joystick and other controls are plugged in.  Initiated by the Driver Station, the 
following sequence of events occurs every 20 ms: 

1. The Driver Station gathers up the current robot mode, joystick positions, button 
presses, etc., and sends a data packet to the robot. 

2. The data packet is received by Start COM, which is running as a sub-VI under Robot 
Main. 

3. Start COM caches (stores) the data from the packet and signals “OK” to Get Mode 
(which has been paused, waiting for this signal, if your Teleop code has completed). 

4. Get Mode then reads the communication cache to find out which mode the robot is in, 
and then selects the appropriate state in the state machine for execution. 

This appears to be all very straightforward, but it has consequences that you should be aware 
of.  For example, when your code calls Joystick Get, the returned data is not the current posi-
tion of the joystick, but the current contents of the joystick cache.  You can make code that 
reads the joystick as fast as you like (by, e.g. putting the code in Periodic Tasks), but you 
won’t actually get fresh readings of the joystick position faster than every 20 ms (which is 
pretty darn fast).  If there are communication problems so that packets are dropped, your ro-
bot’s responsiveness may be affected, because the looping of the state machine only happens 
when a fresh packet arrives. 

At the start of our discussion of Teleop, I mentioned that your Teleop code needs to complete 
in under 100 ms.  It might seem that the reason for this is that you want Teleop to be all done 
and waiting for fresh data when it arrives, and that is true, but there is actually a more urgent 
reason.  There is a safety check system that requires you to write data to your drive motors 
every 100 ms (which you do by calling any one of the motor drive VIs).  If you don’t, then 
your motor outputs will be set to zero, stopping your robot, and in the Diagnostics tab on the 
Driver Station, you will get the following error message: 

Watchdog Expiration: System 2, User 1 

ERROR <Code> -44061 occurred at "Drive Motors" in the VI path: Robot Main.vi 

<time>07:37:13 03/03/2012 

FRC:  The loop that contains RobotDrive is not running fast enough. This error can occur if the 

loop contains too much code, or if one or more other loops are starving the RobotDrive loop. 

This disabling of the motors is not permanent.  On the next execution of your code, fresh 
values are sent to the motors and operations resume.  Because the communication system is 
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not perfect, there will occasionally be dropped packets and this safety check system will op-
erate.  Since 100 ms is not very long, you won’t even notice it. 

Well, you won’t notice it unless your robot enters a death spiral.  Every time a safety timeout 
occurs, the robot “throws an error”, and you will get a cryptic message visible on the Diag-
nostics tab of the Driver Station.  The problem is that error handling is very time consuming, 
and slows down the execution of everything else, like your Teleop code.  So if you code is on 
the hairy edge, which is to say it takes close to 100 ms to complete a single iteration, then the 
error handling will cause it to take longer on the next execution, which will throw more er-
rors, slowing things down, causing more errors…in other words, a death spiral.   

So, what are the steps to avoid a death spiral? 

1. Monitor your CPU usage on the Charts tab of the Driver Station.  Make sure you are 
running at only about 60% of capacity during Teleop (and Autonomous). 

2. Monitor the message window on the Diagnostics tab.  You will inevitably get the oc-
casional message here, but if you press the Clear Errors button and the window im-
mediately refills with errors, then you have a problem. 

3. Use the Elapsed Times VI to time how long it takes Teleop to complete.  This VI is 
found in the Support Code section of the Framework project tree.  You use this when 
running your code in RAM (so you have access to the VI front panels).  Put this VI 
inside Teleop, open its front panel, and run the robot code.  The VI will tell you the 
time (in milliseconds) between successive calls to Teleop.  You can also use this VI 
inside loops in Periodic Tasks or Autonomous. 

4. Build your own timers into your code, and send that information up to your custom 
Dashboard (see Chapter 8) so that it is always accessible. 

5. Make sure that you write to your drive motors on every call to Teleop, even if only to 
send a value of zero.   

6. Live dangerously. (Optional.  Not Recommended).  There is a Safety Config VI on 

the RobotDrive ► Advanced palette that you can place in Begin.vi and use to turn off 
the safety checking system.  For use by Wizards only. 

The general symptom of a death spiral is that your robot will twitch, often quite violently.  
What is happening is that the safety system is cutting the motors out, and normal operation of 
the Framework is turning them back on.  The two systems fight each other, and your robot 
loses.  If your robot comes down with a case of St. Vitus dance, then your number one sus-
pect is that the execution time of your Teleop code is longer than 100 ms. 

Teleop Strategy 

Now that you understand how Telop works, what should you do about it?  Well, some things 
need to run fast, and some things don’t.  Your driving code will most likely be quite simple, 
and there is no point in it being faster than a human anyway, so probably you can keep that 
all in Teleop.  Similarly, motors that are simply turned on and off by the driving team can 
stay in Teleop.  On the other hand, consider PID control to hold the position or speed of 
something constant at a specified value.  (You will actually be able to consider such a thing 
after you have mastered Chapter 6.)  That kind of code should run pretty fast, and the good 
news is that it can.  The process variable will be a sensor reading, and that does not come 
from the Driver Station.  So, you can read the sensor and run the PID with a fast loop in Peri-
odic Tasks.vi.  If the setpoint for the PID has to come from the Driver Station (from some 
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joystick or other control you set up), you can read it in Teleop and pass the value to Periodic 
Tasks through a global variable. 

 Autonomous 

It turns out that Autonomous is just like Teleop—except…  Except that there is no joystick 
control, of course.  More importantly, there is no external looping.  Your VI is called once, 
and runs for the entire autonomous period.  So it has to have an internal While Loop (or 
loops) so that it keeps doing what it is supposed to be doing for the entire autonomous period. 

The Most Important Part 

The last part of the last sentence was oh so casually phrased, and yet so absolutely critical.  
“…for the entire autonomous period” is literally true!  Your Autonomous VI MUST NOT 

END.  If the code completes and has nothing left to do, it must continue to loop.  If your VI 
actually terminates, the Framework will throw an error when it tries to stop a program that is 
already stopped.  In principle, that should not cause any actual problems, and at your home 
base, it will not cause any problems.  And I have learned directly from NI staff who worked 
on the Framework that it can’t cause a problem.  But I have also personally seen a robot that,  
when connected to the Field Management System (FMS) at a competition, would not func-
tion during Teleop.  All it took to fix the problem and allow the robot to compete was the ad-
dition of an infinite loop to the end of the Autonomous code so that the VI never stopped 
running. So, let’s not say that an Autonomous that never stops is a requirement, let’s just say 
that it can’t hurt, and might even be a good idea. 

How Autonomous Works 

This is not obvious.  When you look at Robot Main, it is clear how it calls Teleop, but what it 
is doing with Autonomous is very different.  For starters, the VI doesn’t even appear inside 
the state machine, but only in this weird green box outside the main While Loop, as shown in 
Fig. 4.1.  This green box is a Static VI Reference node.  Usually, when you drop a VI into a 
program, the code is in some real sense right “there” where you dropped it.  The Autonomous 
code is not “there” at that location in Robot Main.  Instead, we are telling LabVIEW that this 
is a VI we will want to run later, so it should make a note of it.  That note is called a “refer-
ence”, which is to say, the green line that comes out contains a reference to our Autonomous 
code.  We can run the code using an “invoke node” that looks up the reference and runs the 
VI that it finds there.  In this case, “runs” means “launches so that it executes in parallel with 
Robot Main.” 

Fig. 4.12 shows how Robot Main invokes your Autonomous code.  The reference is passed 
into VI, whose contents is—surprise!—another state machine.  The guts of the Start/Stop VI 
are shown in Fig. 13.  The first time the control output of Get Mode is set to Autonomous, 
the Call Context output is set to Init.   The Init case contains a VI whose icon reads “Start BG 
VI”.  This VI “invokes” your autonomous code, which is to say, it starts your code running in 
parallel with Robot Main (you can open this VI to see how it’s actually done).  Robot Main 
itself continues to loop, but now Call Context has the value Execute, and you can see that the 
code does nothing but continue to keep track of the VI reference using a feedback node.  Fi-
nally, at the end of Autonomous, Get Mode (under the influence of the Driver Station) sets 
Call Context to Stop, and a VI is called to invoke the termination of your Autonomous VI.  
Attempting to stop a VI that is not, in fact, running throws an error.   
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FIGURE 4.12  The Autonomous state in the Robot Main state machine. 

 

 

FIGURE 4.13  The cases in the Start/Stop VI that calls your Autonomous code. 

The Autonomous Code 

Fig. 4.14 shows the essential bits that come in the default Autonomous code.  I say “essen-
tial,” but I should really say “constant”.  From year to year, Autonomous is the code that var-
ies the most.  Sometimes you get code that gives you a big head start on developing a func-
tioning Auton program for that year’s game.  Other years you get just a bit of sample code 
that gives you an idea of things you can do, but is not really game specific.  So the figure 
shows none of that.  It only shows the VIs that communicate with the Driver Station. 

There is a VI that tells you whether you are in a Red or Blue alliance, and which of the three 
driver positions you are plugged into (which just reads a setting on the Driver Station, so if 
you forget to set it there, this data is useless).  There’s a fast loop that signals the Driver Sta-
tion that Autonomous code is running, and there is an assignment of a slow blink speed to the 
User LED.  Note that if you are careful to not delete this fast loop, it will automatically pro-
vide you with an Autonomous VI that never ends. 

 

FIGURE 4.14  The “standard” bits of Autonomous Independent.vi.  
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Also shown in Fig. 4.14 are two VIs that let you pass data to your Autonomous code, labeled 
as Get Dig In and Get Alg In.  They pass eight Boolean and four analog values, respectively.  
You set up these values on the Driver Station I/O tab (see Fig. 4.15).  The Booleans are just 
set up as switches, while you can set the analog values by using the sliders, or by typing a 
value in the text window.  These values are latched at the start of the Autonomous period so 
that you can’t use them as some kind of illegal joystick control.  Whatever you set up before 
the match is what you have for the whole Auton period, but it does provide a way of, for ex-
ample, selecting among possible behaviors without having to change the code on your robot.   

 

FIGURE 4.15  The I/O tab of the Driver Station showing digital and analog con-
trols for sending information to your robot to be read at the start of Autonomous.  

If you use the analog data channels, do not write code that depends on the exact value of the 
number passed.  For example, if your code is designed to test whether x is equal to 3.14159, 
it will never find that it is.  Your analog numbers are divided by 5, multiplied by 1024, and 
passed as integers.  This conversion is undone on the robot, but the truncation leads to small 
inaccuracies.  You can only set positive numbers using the analog sliders, but you can type 
negative numbers into the text windows.  Since the integers used to pass the data down to the 
robot are signed, you will probably get a correctly converted negative number at the robot, 
but you should verify this works as you expect. 

You can also see from Fig. 4.13 that there are also eight digital “outputs”.  There is an addi-

tional VI on the DriverStation ► Compatiblity I/O palette that will allow you to write values 
to these indicators.  They can be used for diagnostics, but are probably too small to be useful 
during a competition.  If your robot needs to send you a message, you should use the Dash-
board, where you are free to design your own big, bright, flashing signals that could possibly 
be noticed amid all the excitement of a competition. 

Disabled, Finish, and Test 

As I mentioned before, the Finish routine is never called at a competition.  In fact, there is no 
way for the Driver Station to call it.  It can only be invoked by pressing the Finish button on 
the front panel of Robot Main.  If you are not going to delete the call (by making the Finish 
case in Robot Main empty), then you might want to edit this VI so that reference names 
match your actual reference names, etc., but nothing bad will happen if you don’t.  In the 
worst case, you will get an error message when you press that Finish button.  But you were 
already stopping the program, so it doesn’t matter. 

Disabled.vi is another matter.  This VI is constantly being called when your robot is powered 
up, but not yet enabled.  Fig. 4.16 shows the default code. Notice that this code is called dur-
ing a very important time in a competition match:  after your robot is powered up on the 



64  

field, but before the match has started.  At this point, Begin.vi has already finished, and Peri-
odic Tasks.vi is running.  If you need to read a sensor or perform a calibration so that every-
thing is ready when Autonomous starts, now’s a good time to do it.  You can’t run any mo-
tors, of course, nor any pneumatics, but you can read all the analog and digital inputs from 
the cRIO, and you can write to global variables. 

 

 

FIGURE 4.16  The default Disabled code that comes with the Framework. 

One thing you must not have in Disabled is any loops, particularly no infinite loops.  There is 
no external mechanism to shut this VI down, so if a loop is running when the match starts, 
your robot will not start.  It will stay in the disabled state until that loop finishes.  If the loop 
never finishes, then your robot is stuck for the duration of the match.  I can promise that if 
you do this, your teammates will yell at you.  Graciously, and with professionalism, of 
course, but they’ll be yelling all the same. 

Finally, there is a Test state in Robot Main that invokes the Test.vi (which you can find in the 
project tree).  It’s called by reference, just like your Autonomous code.  In only makes sense 
to talk about Test Mode in the context of the Dashboard, so we will make no further mention 
of it here. 

Building, Running, and Debugging 

Building and Running 

As we have discussed, you can run your code on your robot by clicking the white arrow on 
Robot Main.vi.  That puts the code in RAM, which means it will be gone as soon as you turn 
off the power (actually, as soon as execution stops).  For competition, you have to build and 
deploy your code.  If you expand Build Specifications in the project tree, you will see FRC 
Robot Boot-up Deployment (as in Fig. 4.17).  If you are deploying for the first time, right-

click and select Properties…  On the first page (Information), look for the “Local destination 
directory” field.  You can change this to suit yourself, or leave it as the default.  

When you are ready, right-click on FRC Robot Boot-up Deployment, and select Build.  Once 
that process is complete, make sure your Driver Station is communicating with the robot, 

right-click again and select Run as startup.  That’s it.  If there are no communication prob-
lems, your code will download and the robot will reboot.  (If there are communication prob-
lems, just try again.  If it doesn’t work the next time, turn your robot on.)  When cRIO  
comes back after the reboot, your code will be running in ROM, and will start running every 
time you power up the robot.  If you need to make changes to your code (which you won’t, 
because everyone’s first try is always perfect…), just build it again and set it as startup.  The 
new code will replace the old and run when the cRIO starts. 
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FIGURE 4.17  Building and deploying your code. 

You can Unset as startup to leave your code in ROM, but have it not automatically start 
when the robot re-boots.  This will let you load and run code in RAM for further develop-
ment.  If you want to remove the code entirely, you will have to use the Imaging Tool to re-
image your cRIO.  That leaves you with a “blank” robot.  (I’m not going to talk about the 
Imaging Tool, because I am assuming you’ve already learned this kind of stuff from the offi-
cial FRC documentation distributed at the start of every competition season.) 

Debugging 

As I have already mentioned, your code will work perfectly the first time, and if it doesn’t, 
you should feel very, very bad.  OK, that’s a lie.  Nobody’s code works right the first time, 
and I really mean nobody.  And when it doesn’t work right, you need tools to figure out why.  
LabVIEW has a number of such tools built in.  The simplest is the Light Bulb.  On the block 
diagram, a few icons to the right of the Run arrow, is the Highlight Execution icon (a light 
bulb).  Click that and your code will slow way down, little dots will show your data flow, and 
you will be able to see the values being passed into and out of structures and sub-VIs. This 
will work well for small programs running on a PC or laptop.  It will not work for the Robot 
Framework.   

More useful is the Probe, which lets you see the values passed in data wires as the program 
executes.  If your program is running, switch to the diagram.  Every time you bring the 
mouse near a wire, the cursor will switch to a little “P” symbol, as shown in the upper left of 
Fig. 4.18.  Click on the wire, and you will insert a probe.  The upper right of the figure shows 
a simple program with three probes inserted.  Below is the window that pops up to show you 
the contents of each probe.  This method will work on your robot program when it is running 
in RAM and you have access to both the front panel and the diagram. 
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FIGURE 4.18  Probing your code for debugging. 

If the program is not running, you can right-click on any wire and select Probe from the con-
text menu. This will install a probe in the selected wire, which will then update once you start 
the program. You can also set breakpoints.  When the execution of the program gets to a 
breakpoint, it will stop.  You can then use the toolbar to resume execution, or step through it 
bit by bit.  This can be very useful, but it expect it not to be much use in debugging your ro-
bot because halting your code messes with communications and timing. 

Often, the most useful thing to know in order to understand what your robot is doing is to 
record the history of the states that the robot goes through.  Fig. 4.19 shows a bit of the code 
for our Rocket Launcher example from Chapter 2, which I have modified to record the state 
history.  The middle blue wire is the state variable, and holds the value of the next state the  

 

FIGURE 4.19  Recording the history of a state machine. 
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machine will go to.  I started by right-clicking on this line to create an indicator.  Since we 
don’t need to read this indicator, I moved it outside the loop.  You can see it at the bottom of 

the figure.   Then I right-clicked on this (otherwise unused) indicator and selected Create ► 

Property Node ► Strings[].  You can see the property node labeled Launcher State in the di-
agram.  The output of the node is an array containing the strings you used to label your states.  
Use the actual value of the state variable to index that array and concatenate it (with a line 
feed!) into a string indicator.  You should make that string indicator a global variable in Ro-
bot Global Data.  You can stretch the indicator vertically and also right-click on it and select 

Visible Items ► Vertical Scrollbar.  When you run the program, you will get a history of the 
state machine.  If it is a Teleop state machine, a new value gets added every 100 ms, so pre-
pare for a lot of scrolling.  Even so, this is a very useful trick.   

Exercise E10:  Modify your Launcher program to include the code shown here.  Stretch the 
front panel indicator for States History so that at least 25 lines of text can be seen.  Figure out 
how to use a property node to control the scrolling so that once the first 25 states have been 
appended to States History, is scrolls upward, so the most recently visited states are always 
visible.   

Of course, if your code is deployed, you can’t use the debugger.  If you need to understand 
what is happening inside your code, you will need to send data to the Dashboard, or text 
messages to the Driver Station (see below).  And you will need to know in advance which 
variables need to be watched.  This is not nearly as useful as a debugger, but if you have a 
very specific issue that needs to be resolved, it can be better than nothing. 

The Driver Station 

The Driver Station (DS) is the interface between your robot and the rest of the world.  Your 
joystick and other control signals to the robot pass through the Driver Station, as do com-
mands from the field system at a competition.  So, it’s worth knowing a bit more about how 
this piece of software works. 

As I mentioned back in Chapter 3, if you are running Windows 7, you need to be logged on 
as an administrator in order for the Driver Station to work properly.  You launch the DS by 
double clicking on the Desktop icon that was installed when you installed LabVIEW and the 
FRC extensions.  Doing so will also launch the Dashboard.  If you have it set up to do so, the 
DS will also reach into the innards of your laptop and change the IP address settings on both 
your wireless and wired network connections.  The number one reason for communication 
problems between your Driver Station and your robot is forgetting to set your IP address cor-
rectly.  Having the the Driver Station do it for you will simplify your life.  You can turn off 
this feature from the Setup tab, discussed below. 

Switching your IP connection back to DHCP can be a pain using the Windows 
GUI.  Instead, create a text file with the following contents: 
@echo off 

netsh interface ipv4 set address "Wireless Network Connection" 

dhcp 

exit 

Name this file wifi.bat or something similar, and put it in a folder that is in your computer’s 
path (e.g., in C:\Windows).  Now you can just type “wifi” in the Windows Start Menu to go 
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back to normal operation.  For Windows XP, replace ipv4 with ip.  To reset your cable 

connection, replace Wireless Network with Local Area. 

Operation 

 

FIGURE 4.20  The Operation tab of the Driver Station. 

Fig. 4.20 shows the Operation tab.  At the left, you can see the battery voltage, the fact that 
the DS is communicating with robot, that the robot has code, and that joysticks have been 
detected.   Below that is a status message telling us that (in this case) the robot is disabled, 
but that it will run in Teleop mode when it is enabled.  To the right of these status indicators 
are four switches that control what part of your code will run.  If you select Teleoperated or 
Autonomous, then only the corresponding code will run.  In either of these modes, the code 
is allowed to run for as long as it wants, or until you disable it.  If you select Practice mode, 
then the DS will simulate a competition match, first running your Autonomous code, then 
your Teleop code, and then disabling your robot.  (You set up the timing for this mode on the 
Setup tab, discussed in a bit.)  If you select Test, the robot will go into Test Mode.  Read 
Chapter 8 before doing this 

To start things running, you hit the Enable button, or F1 on your laptop.  To disable the robot 
(sending Robot Main to the Disabled state), hit the Disable button or the Enter key on your 
laptop.  To emergency stop the robot, hit the space bar on your laptop.  That’s a nice big tar-
get, but you must re-boot the robot following an emergency stop (or re-load your code if you 
are running in RAM). 

Moving over one column to the right, you can see the elapsed time indicator.  In practice 
mode, this will start over at zero when Teleop starts.  Below the elapsed time display is the 
Kinect status indicator.  Below the Kinect status is a pair of buttons which control whether 
the DS is a floating window (as shown in Fig. 4.20) or locked down in the lower left corner 
of the screen (“competition mode”).  Finally, at the bottom is a control that lets you tell the 
robot your alliance color and driver station (read out by a VI shown in Fig. 4.14). 

Finally, on the right-hand side is a User Message window where your robot can send text 
messages.  The VI for sending these messages (Write User Message) is found on the Driver 
Station palette.  This facility can be useful for debugging, but should be considered totally 
unreadable during a competition.  The text is just way too small to be noticed and read in the 
heat of battle. 

Fig. 4.21 shows the Diagnostics tab.  You can see the LEDs indicating that we have two joy-
sticks, but no Kinect, and that there is communication to the wireless bridge, and to the robot.  
Note that one of the joystick LEDs is blue, indicating that a button on that joystick is being 
pressed.  This allows you to tell which joystick is which.  If the joystick designations are 
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wrong, you can change them on the Setup page.  At a competition, when you are properly 
connected to the field, the FMS (Field Management System) LED will be lit.  Occasionally 
the DS will not find your joysticks and all the LEDs will be gray.  Usually un-plugging and 
re-plugging one of the USB connectors will trigger some magic and the LEDs will go green. 

Diagnostics 

 

FIGURE 4.21  The Diagnostics tab of the Driver Station. 

Next to the status LEDs is the error message window.  When your code throws errors, they 
can be read here.  About ninety percent of the time, the only kind of error you need to worry 
about is a Death Spiral error.  Fig. 4.22 shows that kind of error from a robot that was pur-
posely put into a Death Spiral.  This particular one is from RobotDrive, but you can get very 
similarly worded messages from other subsystems, e.g., Solenoid Set or MotorControl 
SetOutput.  In each case, your code is taking longer than 100 ms to complete an iteration. 

 

FIGURE 4.22  Error messages from a Robot in a Death Spiral. 

Be aware:  you will occasionally get message like these from a robot that is running perfectly 
fine and has no problems.  The communication system between the DS and your robot occa-
sionally drops packets, which can cause errors of the type shown in Fig. 4.22.  If you are un-
certain, hit the Clear Errors button to the right of the message window.  If things are fine, the 
window will stay empty for a while.  If things are not fine, the window will immediately re-
fill with “robot too slow” error messages.  

Below the Clear Errors button in Fig. 4.21 is a button to reboot the cRIO. 

Setup 

In Fig. 4.23 you can see the Setup tab of the DS.  There’s a spot to type in your team number, 
and below that a button choose your network interface card (NIC).  Hitting this will pop up a 
window that will let you choose whether to have the DS change your IP settings, or do it 
yourself.  The controls are separate for the cable and wireless network connections.  Below 
that you can switch between using a local Dashboard and a remote one.  I’ve never done that, 
so I can offer no guidance on the how or the why. 
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FIGURE 4.23  The Setup tab of the Driver Station. 

In the center of the tab are the fields for setting up your Practice mode timing.  You can also 
turn on the standard FRC competition match sound effects, if you want to step up the realism 
by a notch.  Endgame is just a continuation of Teleop.  It makes no difference to the opera-
tion of the robot.  It only controls when the Endgame sound effect gets played. 

Further to the right is the joystick list.  If your joysticks are out of order (as determined using 
the Diagnostics tab), then you can click and drag them to have the order you want.  When 
they are identical devices, as in Fig. 4.23, you want to double and triple check that you’ve got 
it right, especially when getting ready for a match. 

Finally, below the joystick list is a row of buttons that allow you to select which Dashboard 
you will be using.  Since this is a LabVIEW book, you’d think I would recommend pressing 
the LabVIEW button.  Alas, it is not documented, so there’s no way to tell how to point it at 
your own custom Dashboard.  Leave the Default button pressed and replace the default 
Dashboard with yours (see Chapter 8). 

I/O 

This tab, shown in Fig. 4.15, was discussed in the Autonomous section.  There’s nothing to 
add here. 

Charts 

 

FIGURE 4.24  The Charts tab of the Driver Station. 

The charts tab, shown in Fig. 4.24 is quite helpful for diagnosing problems with your robot.  
In the upper graph, you can see the number of lost packets (in blue) and the round-trip com-
munication time between the robot and the DS (in green).  This does not depend directly on 
your code, because communication is handled by the Robot Start Communication routine.  It 
depends indirectly on your code, however, because if your code hogs the CPU, the commu-
nication routine won’t be able to run as fast, and that round-trip time will start to climb. 
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The red line in the lower graph is the most important one here.  It’s the CPU usage line.  In 
the figure, you can see it spike (at the left end) as code is downloaded to the cRIO.  During 
Disabled and Autonomous, the code is not doing much of anything, and you can see that the 
CPU usage is below 50%.  (You can tell the robot mode by looking at the gray, green, and 
blue lines along the bottom of the lower graph.  They tell you the mode of the robot. 

When Autonomous ends, you can see the CPU usage rise to an unhealthy 80 or 90 per cent.  
Teleop contained a While Loop crammed with floating point math and no delay.  The loop 
timer was set at 200 ms and thus jammed up the error handling pipe line.  Don’t do this.  
Make sure your CPU percentage is around 60% or less. 

Also on the same graph is the battery voltage (in yellow).  This code, while killing the CPU, 
ran no motors, so the graph is flat.  If you run motors, you will see this dip into the range of 8 
to 9 V.  If it drops too low, you need to recharge the battery.   If it dips too low when the bat-
tery is freshly charged, you need a new battery.  Also in this graph are some fainter lines that 
tell you what state Robot Main is in:  gray for Disabled, green for Autonomous, and blue for 
Teleop. 

To the right of the graphs are some buttons to select the length of time covered by the graph, 
and a button to control whether the data displayed in the charts is recorded to disk.  The de-
fault is to record the data, and you should leave it on.  The viewer is in C:\Program Files\FRC 
Driver Station.  The data is stored elsewhere, but the viewer knows how to find it.  The files 
have not been cleverly named, so the resulting alphabetic sorting can make it a pain to find 
the file you want.  Unfortunately, all that is logged is what is shown in the charts.  It would 
be very nice if the error messages that show up in the Diagnostics tab were also logged, but 
they are not.   

Above the logging and graphing controls are some indicators that show you how much free 
RAM the cRIO has, the largest single chunk of free RAM, and how much free space is left 
on the cRIO’s “disk”.  Since the cRIO doesn’t have a disk, I am assuming this refers to the 
amount of free EPROM memory. 

Developing Code Without a Robot 

Face it.  Build season is just barely 6½ weeks long.  If you are very lucky, you will have a 
robot to test your code on in the last week of the season.  What are you going to do in the 
mean time?  You are going to develop your control logic, plan and code your state machines, 
and test them on your laptop in “simulators” that you will design yourself. 

To be specific, consider Fig. 4.25, which shows a snippet of the Teleop code from our 2012 
Rebound Rumble robot.  This robot had horizontal belts that brought a ball in to the middle 
of the robot (called the Pickup), and vertical belts that carried the balls upwards to our shoot-
er (called the Queue).  The robot had three infrared sensors, only two of which concern us 
here.  The Pickup sensor (the upper digital input in Fig. 4. 25) was at the front of the robot.  
If a ball blocked it, the Pickup state machine (the VI named Pickup) went from the Idle state 
to the Running state, where the motor for the horizontal belts was turned on.  When the ball 
got to the middle of the robot, it would trigger the Center sensor, which caused the Queue 
state machine to go into action.  This state machine would use the state of the Center sensor 
to figure out when it had picked up the ball, and would (via a global variable) turn off the 
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Pickup.  The actual logic was a bit more complicated than I have described, so it was very 
important to be able to test it thoroughly.  

 

FIGURE 4.25  A piece of Teleop code from Team 1391’s 2012 robot. 

To test it, we went to the Project Tree, and dragged the Pickup and Queue VIs up to the part 
of the Tree for code that runs on “My Computer” rather than on the cRIO.  We also dragged 
up Robot Global Data and our Check Timeout VI, which both Pickup and Queue call.  We 
used all of these in a simulator, as shown in Figs. 4.26 and 4.27.  Fig. 4. 26 shows the front 
panel.  You can see that there are two slider-type controls that are used as indicators to show 
the position of the ball.  The front sensor is a switch, so the user can simulate the arrival of a 
ball.  The center sensor is controlled by the logic of the simulator, shown in Fig. 4. 27.  I 
won’t go through the details here, because they are very specific to our code, and yours will 
be different. 

But there are two important take-aways:  first, you can simulate large parts of the operational 
logic for your robot without the actual robot, and second, it will be a fair amount of work, 
and possibly quite tricky to get the simulator to work correctly.  Unfortunately, you need to 
have the simulator working properly to get your robot code working.  Probably they will both 
circle in to the correct solution at the same time.  When you are confident that your VIs are 
ready, you can go back to the Project Tree and drag them back to the lower, cRIO section. 

 

FIGURE 4.26  Front panel of a code tester/robot simulator.  Booleans take the 
place of the actual robot sensors, and sliders are indicators representing the balls 
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moving in the belt system.  The stuff in the upper left is related to making the 
simulator work, and not part of the code being tested. 

 

FIGURE 4.27  Block diagram of the simulator.  Only the flat sequence contains 
the code being tested.  The rest of the code is just there to allow the testing. 
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Chapter 5 — Input and Output 
In a way, you could argue that this is the most important chapter, because it covers the point 
at which your software actually meets the robot.  It describes how to connect things that are 
“outputs”, like motors and solenoids, and things that are “inputs”, like limit switches, encod-
ers, and accelerometers.  Alas, this book is not the best place to learn about this stuff.   The 

best  place is contained within your copy of LabVIEW itself.  Go to the LabVIEW Help 

menu and select Find Examples…  This will open up the NI Example Finder.  If you look 
down the list of folders, you will see one called FRC Robotics.  If you open that folder, you 
will find more folders, and within those, extremely well documented examples of both how 
to write code for these objects, and how to physically wire them.  So, rather than duplicate all 
of that careful effort, this chapter will serve mostly as a kind of quick reference, with a few 
extra insights and observations tossed in here and there.  

The Interface Sheet 

OK, this section is not about something you will find in the LabVIEW examples, so you see 
the lies continue unabated. 

If you want to avoid panic in the pits and other desperate measures to get things working at 
the last minute, you will need an interface sheet.  This sheet tells you what things are plugged 
in where.  It should be posted on the wall of your shop and—most critically—it should be 
posted up in your pit at a competition.  If a PWM or sensor cable gets pulled out, this sheet 
will help you get it put right quickly.  Especially if you have carefully labeled every cable… 

This can be a very simple document.  As an example, Fig. 5.1 shows our interface sheet from 
2012.  You will notice that we appear to have “skipped” using some inputs.  Actually, we 
were using them, but then had to take some stuff off to make weight.  Re-assigning all the 
inputs would have taken too much time, would have created new opportunities for mistakes, 
and is totally unnecessary.  Better to just leave things where they are and have blanks. 

 

FIGURE 5.1  A sample interface sheet. 
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Joysticks 

Fig. 5.2 shows how to wire up a joystick.  The left diagram goes in Begin.vi, and the right 
diagram goes in Teleop.  The Scaler value is an optional input to make your joysticks more 
sensitive.  Here’s how it works:  the raw joystick value is an 8-bit signed integer, so it can 
have (integer) values from -128 to 127.  The raw value is divided by the value of Scaler to 
give a real number output between -1 and 1.  Scaler is also an 8-bit signed integer, so it can’t 
be larger than 127 (which is the default value if you don’t wire anything to this input).  If 
Scaler is, say, 64, then the joystick (real number) output will reach 1.0 when the joystick is 
only at half range.  As you move the joystick further, the output remains “clipped” at 1.  

 

FIGURE 5.2  Joystick wiring.  The left hand bit of code goes in Begin.vi.  The 
right-hand bit goes in Teleop.vi.  

Motors 

Motor control VIs come in two types:  “simple” controls that make programing your drive 
motors easy, and “advanced” controls that allow you to wire up individual motors yourself.  
In certain respects, the “advanced” controls are simpler.  Fig. 5.3 shows the wiring for a sin-
gle motor.  The Open VI is “polymorphic”, which means that it can be one of several ver-
sions.  You have to select from the drop-down list so that the type you are using matches 
your actual type of motor controller. 

 

FIGURE 5.3  Single motor wiring.  The left hand bit of code goes in Begin.vi.  
The right-hand bit goes in your drive code (which could be Teleop.vi, Autono-
mous Independent.vi, or Periodic Tasks.vi). The polymorphic selector on the 
Open VI is set for a Jaguar controller. 

The output from a typical joystick controller is rarely zero, even when the joystick is centered 
so that you expect there to be no signal to make your motor turn.  To protect you from un-
wanted motion from a “zeroed” joystick, the motor control system has a built-in “deadband”.  
Small signals (near zero) that are within the deadband are ignored.  You may not always 
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want this (for example, if you are controlling a motor with a PID), and the Eliminate Dead-
band input on the Open routine allows you to turn it off by wiring a True value to this input. 

Robot Drives 

Depending on your robot design, the required code for driving it can be quite complicated.  
The FRC code package included pre-made VIs for the most common drive schemes.  Fig. 5.4 
shows the code for an “arcade” style drive, in which a forward-back joystick motion controls 
the robot speed, and a left-right joystick motion steers the robot.  You can use a single joy-
stick for this, or separate ones (Fig. 5. 4 shows a single joystick arrangement). 

 

FIGURE 5.4 A simple arcade drive.  The left hand bit of code goes in Begin.vi.  
The right-hand bit goes in your drive code (which could be Teleop.vi or Periodic 
Tasks.vi, but not Autonomous because it reads a joystick). The polymorphic se-
lector on the Open VI is set for a Victor controller (we don’t take sides here!). 

In addition to Arcade Drive, there are VIs for tank and holonomic (or mecanum) drives.  Be 
sure to use the Open 4 Motors VI with a mechanum drive. 

Drive Delays 

Back in Chapter 2, we discussed how to implement delays as part of a state machine so that 
you would not send your robot into a Death Spiral.  Well, if you are absolutely determined to 
program your robot wrong (i.e., not use state machines), then you might find the Drive Delay 
VI shown in Fig. 5.5 useful.  The figure shows a robot set to move forward for 1 second.  The 
VI in the middle is the delay.  You tell it how long you would like to delay, and how often 
you should feed the Watchdog so that your robot is not stopped for safety reasons.  In this 
case, the Watchdog is being fed every 50 ms.  When the delay is over, the third VI executes, 
stopping the robot.  The Drive Delay VI only operates with Robot Drive VIs.  It won’t work 
with the lower level motor control VIs. Bear in mind that functionally, this is still a blocking 
call.  Whatever code contains this node can’t complete or break away from what it is doing 
until the full delay time has passed. 

 

FIGURE 5.5 A delay done without a state machine, but also without annoying 
the Watchdog. 
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Digital Input and Output 

Digital input and output (DIO) is done through the Digital Sidecar (connected to a 9403 
module plugged into the cRIO).  There are 14 available DIO channels which you can config-
ure individually for either input or output (but not both at the same time).  There are also 8 
additional Relay channels.  These are digital output only channels that can supply enough 
current to operate a relay, and also have some other features which we will discuss in a bit.  

Input 

Probably the most common use of digital input is to detect whether a switch is open or 
closed.  Often this is a mechanical switch used to detect whether some part on your robot is 
at the limit of its allowed motion.  The pressure switch that is part of the pneumatic system is 
another example of a switch that used with a digital input.  Fig. 5.6 shows code configuring 
DIO channel 1 as an input, and also code to read the value. 

 

FIGURE 5.6 Code for a digital input.  By now you can figure out for yourself 
which part belongs in Begin.vi and which part goes in your control code.  

The DIO channel has three pins.  One is a ground (marked “(-)”), one is +5 V (marked 
PWR), and the third is the signal, which in this case is an input.  If the signal wire is connect-
ed to the ground pin, the input value will return False.  If it is connected to the +5 V pin, then 
the value will return True.  What if the signal wire is not connected to anything?  There is 
what is known as a “pull up” resistor somewhere in the electronics, so if the signal wire is not 
connected to anything (or “left floating,” as we like to say), the input will be “pulled up” to 
+5 V and the value will return True.   

It is not great design to rely on this pulled-up True value.  For example, consider the standard 
microswitch that you get every year in the Kit of Parts.  It looks something like Fig. 5.7.  
Suppose you want a True input when the switch is closed (by pressing the lever).  Hook up 
the signal wire to the common terminal, hook the ground wire to the NC (“normally closed”) 
terminal, and the +5 V wire to the NO (“normally open”) terminal.  Now the signal wire is 
connected directly to ground and the DIO input will read False—until the lever is pressed.  
Then the NC contact opens and the NO contact closes.  Now the signal wire is connected di-
rectly to +5 V, and the DIO input will read True. 

 

FIGURE 5.7 A standard microswitch 
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Output 

Fig. 5.8 shows code to configure and use a digital output.  Not surprisingly, it looks a lot like 
the digital input code.  If the control Output State is True, then the signal wire will be pulled 
up to +5 V, and if it is False, then the signal wire will be pulled down to 0 V.   

 

FIGURE 5.8 Code for a digital output 

 

Be aware that if you do nothing to a DIO channel, but simply leave it un-configured, the sig-
nal wire will float up to about +4 V.  It probably can’t supply much current in this state, so it 
couldn’t close a Spike relay, but it might be able to activate other devices that read a voltage 
without drawing much current (a device with an FET input, if you want to get technical).  
This situation can occur if you configure DIO channel 8 to control your device, but acci-
dentally plug it into channel 9, which you didn’t configure.  So pay attention. 

Relays 

Like the DIO channels, the relay channels have three pins, but the function is very different.  
This is because, as a bonus feature, the relay channels have been configured to allow you to 
run a motor off a Spike relay.  The motor runs only at one speed—full on—but you can run it 
in either direction. 

Let’s start with the code, shown in Fig. 5.9.  When you open the relay channel, you have to 
specify “Forward”, “Reverse”, or “Both Directions”.  When you set the relay, your choices 
are “Off”, “On”, “Forward”, and “Reverse”.  The relay channel actually has two outputs, im-
aginatively named “A” and “B” (squint hard at the Digital Sidecar and you will see the label 
telling you which pin is which). Table 5.1 shows you how each output pin depends on the 
inputs to the Open and Set VIs. 

 

FIGURE 5.9  Code to set up a relay. 

If you set up the Relay Direction to be “both” then you will be able to control the direction of 
rotation (but  not the speed) of a motor powered through a Spike.  

Encoders 

Encoders are used to tell you how far and how fast a shaft has rotated.  Typically, you have 
these attached to some rotating parts in your drive train, and you can use them to move the 
robot a specific distance (useful in Autonomous) or at a specific speed.  As you can see from 
Fig. 5.10 below, a quadrature encoder (the type typically included in the FRC Kit Of Parts, 
and the most useful for a robot) uses up two DIO channels. 
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TABLE 5.1  In this table “1” represents the output pin at +5 V. 

Relay Direction Relay Value A B Relay Direction Relay Value A B 

Both Directions 

Off 0 0 Forward Forward 1 0 

On 1 1 Reverse 0 0 

Forward 1 0 

Reverse 

Off 0 0 

Reverse 0 1 On 0 1 

Forward Off 0 0 Forward 0 0 

On 1 0 Reverse 0 1 

Unlike the sensors we’ve discussed so far, an encoder needs quite a bit of configuration in order 
to be useful.  If you have a tank or arcade drive robot, and are including encoders, a bit of 
thought will convince you that unless you do something very unusual, one of the encoders will 
need Invert Direction set to True.  Whether it’s the left or right encoder will depend on how they 
are installed, which direction you define as “forward”, and how you feel about negative numbers. 
The reason for using a quadrature encoder is that it can tell which way the shaft is rotating.  
Starting from zero, one direction of rotation will give a positive distance travelled, and the other 
will give a negative distance. 

 

FIGURE 5.10 Code to open and read a quadrature encoder. 

When you use the Get VI to obtain the distance, the number you get is the total accumulated dis-
tance since the encoder started.  If it moves ten feet forward, and then ten feet back, the returned 
distance will be zero (or close to it).  If the robot has been moving mostly forward for a whole 
competition match, the returned distance will be a very large number, which may not be conven-
ient.  For that reason, the Encoder VIs include a Reset VI.  Whenever it is called, it resets the to-
tal distance travelled to zero.  Fig. 5.11 offers some code showing how you might implement a 
reset under software control. 

The Decoding Type configuration input selects the type of encoder you have, which will almost 
certainly be a quadrature one, so select “4x”. 

The DistancePerCount input is your calibration, so you want to take the time to get a good 
number here.  Make a test program to set up and read your encoders (with the distance re-
ported to the front panel so you can write it down).  Be sure to include the ability to reset (ze-
ro) the encoder with a front panel control or joystick button.  For now, set DistancePerCount 
to 1.  Now zero the encoders and push or drag your robot a carefully measured distance over 
a surface similar to what it will see in competition.  This distance should be large:  20 to 30 
feet (6 to 9 meters in a unit system not based on the shoe size of a long dead English king).  
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Do this several times, and average your recorded distance (which is really just the number of 
actual encoder pulses, since the calibration factor is one).  Now set DistancePerCount equal 
to the distance you dragged your robot divided by your average number of counts.  You can 
use any distance unit you like.  Just remember what it was!   

 

FIGURE 5.11 Sample code to reset and encoder. 

As you can see from Fig. 5.10, the Get VI can also set a Boolean output True if it detects the 
robot is no longer moving (possibly useful in Autonomous).  But under real conditions, the 
encoder on a fully stopped robot may still emit pulses at some rate.  They will probably be 
alternating positive and negative pulses, but pulses nonetheless.  If the number of these puls-
es per second is less than the value of Minimum Rate, the Get VI will consider the robot to 
be stopped and will set that output true.  You are unlikely to need a value different from the 
default of 20.  

According to the documentation, Number Samples to Average “…specifies the number of 
samples of the timer to average when calculating the pulse rate.”  At one point in the past, 
there was an acknowledged bug in the FPGA code for the encoder rate (in the 2011 season), 
and as a result, teams had to develop a “do it yourself” solution, such as is shown in Fig. 
5.12.  Of course, this solution doesn’t do any averaging, and encoders can be a bit noisy.  If 
needed, you can add a boxcar filter (which you will learn about in the very next section.) 

 

FIGURE 5.12  Code to calculate your robot’s speed.  This goes in a fast loop (10 
or 20 ms loop time) in Periodic Tasks.vi.  You should be able to figure out how 
to modify it to give some other rate (like the RPM of a shooter wheel) if that is 
what you need. 
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Analog Input 

The analog input plug-in to the cRIO is used to read voltages directly.  In truth, the digital 
inputs read voltages too, but then interprets them as either a zero or a one (True or False).  If, 
on the other hand, you apply +5 V to an analog input, you will get a real number (e.g. 5.00) 
when you read it.  There are many accelerometer and gyro sensors that are read using analog 
inputs (although the accelerometer distributed with the Kit of Parts lately has been a digital 
device).  The FRC code supplies specialized drivers for some of these sensors.  For others 
you need to do it yourself by reading a voltage (or voltages) and programing whatever math 
is required to convert that into a distance, angle, or whatever.  I’m going to leave these spe-
cific sensor types to the provided LabVIEW examples, and only describe “vanilla” Analog 
Input, which will be enough to get you started.  For planning purposes, keep in mind that 
while there are a total of eight analog inputs available on the cRIO plug-in, you only get to 
use seven of them, as channel 8 is used to read the battery voltage. 

Fig. 5.13 shows the simplest possible to read an analog voltage.  One problem with analog 
signals is that they can be noisy.  (One of the things that made digital electronics such a bril-
liant invention was its noise immunity.)  There are many possible solutions to noise.  The 
best is to use large signals (a volt or more) and make meaningful changes in the sensor value 
large as well.  For example, if you are using a potentiometer as an analog sensor to determine 
the rotational position of a device, try to set it up so that the smallest position change you 
care to know about results in a voltage change of 0.1 V or more.  In that case, you most likely 
not be affected by the noise level. 

 

FIGURE 5.13  Simple code to set up and read an analog voltage. 

Of course, it may not be possible to arrange for large voltage changes, and you may be stuck 
with a situation where your signal-to-noise-ratio (S/N) is not as large as you’d like.  In that 
case you can improve the S/N by averaging.  There is a Get Average Voltage VI that will 
give you a smoothed signal, but I’m going to recommend that you implement your own box-
car averaging scheme.  The main reason for this recommendation is that the Get Average 
Voltage VI is a bit of a black box, and it is very clear what the boxcar average is doing.  Plus, 
this way, you get to learn about boxcar filters, which I know you’ve always wanted! 

Fig. 5.14 shows a simple boxcar implementation.  An array of ten elements is held in a shift 
register.  On each loop iteration, the array is rotated by one element, so the oldest data value 
(in position 9) is “rotated” into position 0, and then replaced by a new reading.  You take the 
average of the array as your sensor value.  Ten samples is kind of the optimum number of 

samples.  For random noise, S/N improves as √�, where � is the size of the storage array.  If � is ten, then you make things better by a factor of 3.  If you make � equal to 100, then your 
averaged value will lag behind the input voltage, and your S/N will only be improved by a 
factor of 10.  Fig. 5.15 shows the effect of ten and 100 sample boxcars on a simulated noisy 
voltage.  Be aware that the lagging behavior is a characteristic of any filtering scheme, not 
just the boxcar, so if you try too hard to clean up your signal, your system response becomes 
“laggy.” 
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FIGURE 5.14  Code to implement a boxcar averager.  This goes in a fast loop 
(10 or 20 ms loop time) in Periodic Tasks.vi.   

 

 

FIGURE 5.15  The original noisy signal is shown in white.  The red curve is the result of a 10 
sample boxcar.  The green curve is the result of a 100 sample boxcar.  You can see that it is 
much smoother, but also lags the original signal by quite a bit.  The gap at the beginning occurs 
because the output of a boxcar is garbage until the array has been filled with measurements. 

Pneumatics 

The FRC pneumatic system is actually two systems: one to control the compressor that pro-
vides the necessary supply of high pressure air, and one to control the solenoid valves that 
operate your pneumatic cylinders.   

The Compressor 

The compressor system has—from a software point of view—two key components:  a digital 
input that tells the system to turn the compressor on or off, and a relay output that actually 
turns the compressor on or off.  Setting up these inputs and outputs is handled by the com-
pressor VIs.  You don’t have to set them up yourself, but you do have to tell the compressor 
system which channels you are using.  Fig. 5.16 shows the appropriate code, both the part for 
Begin.vi, and the part that goes in Periodic Tasks. 
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FIGURE 5.16  Left:  code to set up the compressor.  In this example, the DIO 
channel for the pressure switch and the relay channel for the Spike relay are both 
connected to the same Digital Sidecar, but they could be on separate ones.  
Right:  code to run the compressor, which goes in Periodic Tasks.  Note that the 
Control Loop is already a loop, and should not go inside a While Loop. 

In principle, you do not need to know the following, but it may help you troubleshoot when 
things aren’t going right:  the pressure switch is normally closed (causing the compressor to 
run), and opens when the pressure reaches 120 psi (stopping the compressor).  The switch 
will stay open until the pressure has fallen all the way to 100 psi, at which point it will close 
again.  This hysteresis ensures that the compressor runs occasionally to top up the pressure, 
instead of running continuously. 

Valves 

We can’t talk about the rest of your pneumatic system without talking about valves.  General-
ly speaking, you will deal with 5 port valves.  These have one port for the air supply, two 
ports to extend and retract a cylinder, and two vent ports.  These valves come in two flavors:  
Single or Double.  If your valves are from SMC, they will look something like what is shown 
in Fig. 5.17 (shamelessly grabbed from the Web in what I hope falls under the Fair Use por-
tion of copyright law…).  What is nice about this figure is that is shows two valves, a Single 
and a Double.  They both sit on top of a manifold that allows for connection of a common air 
supply.  Bear in mind that there are many configurations possible.  For example, each valve 
could sit on its own base.  Or, you could be using valves from Festo, which look completely 
different, and don’t have a separate base.  Don’t be distracted by these details, but concen-
trate on the functional differences, which are important. 

 

FIGURE 5.17  A Single solenoid valve (one orange dot) and a Double (2 dots).  
These valves are from SMC.  They don’t look exactly like what you are likely to 
find in your team’s box of random pneumatic stuff, but are close enough.  If you 
press on the dot, the valve will act as if a voltage has been applied to that coil. 

First, a minor difference.  Solenoid valves are part of the pneumatic (air) system, but they are 
electrical devices.  They will either operate on 12 VDC or 24 VDC.  You can supply either to 
the solenoid module in the cRIO, but all your valves have to operate at the same voltage.  So 



84  

make a choice early in your planning process, and then make sure that you don’t accidentally 
install the wrong type. 

Doubles 

Double valves have two coils, as they are called, and therefore use up two of the eight chan-
nels in a solenoid module.  Fig. 5.18 gives schematic picture of how the valve operates.  You 
energize one of the coils to drive the valve so that the internal connections are as shown in 
the left-hand figure.  This supplies air behind the drive piston, and allows the space in front 
to vent.  This will cause the cylinder rod to extend.  If you de-energize the coil, the valve will 
stay in this position.  To retract the cylinder, you energize the other coil.  This drives the 
valve to the configuration shown on the right, which now vents the space behind the piston, 
and pressurizes the space in front. 

   

 Extend Retract 

FIGURE 5.18  A schematic view of a 5-port Double solenoid valve (connected to a pneumatic 
cylinder) in operation.  The valve body is the dotted box.  The cylinder is the awkwardly 
drawn object on the right.  Be aware that this is a very non-standard diagram.  Professional 
drafting symbols for solenoid valves are even more confusing. 

The code to drive a Double solenoid is shown in Fig. 5.19.  You define forward and reverse 
channels when you open the solenoid, and select either Forward or Reverse from among the 
four options when you call the Set VI, depending on which coil you want to energize.  The 
On option energizes the Forward coil.  The Off option de-energizes both coils, but there is 
really no harm in leaving a coil energized for the duration of a match. 

 

FIGURE 5.19  Simple code for the set up and operation of a Double solenoid. 

Singles 

A Single solenoid valve is pretty much like a Double, except that it just has one coil.  (I 
know.  You are astounded at this revelation.)  The missing coil is replaced by a spring.  There 
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are two consequences to this difference, one is important, and the other is really important.  
The important consequence is that the Single valve only uses up one channel on your sole-
noid module.  If your robot calls for a lot of pneumatics, and you don’t want to add a second 
solenoid module to your cRIO, then use Single valves. 

The really important consequence is that when the single coil is de-energized, the spring au-
tomatically pushes the valve back to the other configuration.  So, imagine the following sce-
nario:  the competition rules allow you to earn 10 points if your robot is hanging from a bar, 
not touching the ground, at the end of a match.  You design a pneumatic hook that extends to 
grab the bar, and retracts to lift the robot.  If you use a Single valve (and hook it up right), the 
robot can lift itself even after the robot power is disabled at the end of a match.  So if you’ve 
managed to hook the bar, but haven’t left enough time to hit the button and lift the robot, you 
will get the 10 points anyway.  Use a Double solenoid for this application, and you can al-
ready hear the classic “waa, waa, waaaa” failure sound effect playing in your head. 

 

FIGURE 5.20  Simple code for the set up and operation of a Single solenoid. 

Fig. 5.20 shows some simple code for the set up and operation of a Single solenoid.  Of the 
four choices for the input to the Set VI, you can use On and Forward interchangeably, and 
Off and Reverse interchangeably. 

Servo Motors 

A servo motor is a rotary actuator.  You can read and set it’s angular position.  Industrial ro-
bots use lots of servos, and control not just their position, but their speed and acceleration, 
often with amazing precision.  In the FRC world, we have small plastic servos that don’t 
have much torque, and only rotate about 180○.  The software tools only allow us to control 
position.  Servos are most commonly used to aim a camera, and can be used, in combination 
with image processing, to track an object.  Fig. 5.21 shows some basic code to open and con-
trol a servo, but if you are interested in using a gimbal-mounted camera for object tracking, 

then you should look at the example (found by selecting Find Examples… on the Help menu 

and then scrolling down to the FRC Robotics folder and looking in Actuators).  This is quite a 
sophisticated example, and you will learn a lot by studying it, even though it does the image 
processing on the cRIO (more about that in Chapter 7). 

 

FIGURE 5.21  Simple code for the set up and operation of a servo. 
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Chapter 6 — PID Control 
This is advanced topic, but a useful one.  PID is shorthand for Proportional, Integral, and Dif-
ferential, and it provides a way to command your robot to a speed or a position automatically, 
rather than by trying to get it just right by hand (and under the pressure of competition, etc.)  
It is essential in “real” robots, the kind you find on factory floors assembling cars.  It is also a 
sophisticated subject, and I cannot claim to be an expert.  So what you will get from this 
chapter will be pretty basic, but it should be enough to allow you to use PID control in your 
own robots. 

The PID Concept 

PID is all about control.  Suppose there is something on your robot you would like to control.  
To make it specific, imagine that there is a motor that you would like to have spinning at a 
specific RPM.  We’ll call your desired RPM the “setpoint”.  In order to make this control 
work, you’ll have to be reading the rotation rate of the motor with an encoder.  The output of 
this encoder is known as the “process variable”.  The goal of PID control is to change the 
drive signal to the motor until the process variable equals the setpoint.  If the motor is spin-
ning too quickly, the drive signal needs to be reduced.  If the motor is spinning too slowly, 
then the drive signal needs to be increased. 

That all sounds very simple and straightforward, but it turns out that making such a control 
scheme work requires a bit of sophistication.  Let us designate the desired RPM of this mo-
tor, the setpoint, as �.  We’ll designate the actual speed of the motor, the process variable, as �.  Finally, the input to the motor control VI (a real number between -1 and +1) is designated �, for control value.  The difference between what we want and what we have is the error, � = � − �.  

For large errors, you might think that a good way to calculate �, the correct drive signal to the 
motor, would be to simply take � multiplied by a scale factor (called the proportional gain, 
and labeled ��).  This is proportional control: the farther your actual speed is from the de-
sired speed, the bigger the control signal sent to the motor.  If you think about it, however, 
this kind of control scheme is destined to failure.  As your motor gets closer and closer to 
spinning at the desired speed, the smaller the error.  That means that your control value gets 
smaller, causing the motor speed to drop, which then increases the error.  If that sounds to 
you like a situation in which your motor speed would oscillate:  speeding up and then slow-
ing down, you would be correct.  Oscillation is a well known symptom of a proportional-only 
control system in which the gain is too large.  If the gain is too small, the symptom is steady 
behavior, but with a large, constant error. 

The solution to the proportional only scheme is to add “an integral term.”  That is to say, de-
velop a contribution to � that depends on the error signal accumulated over time.  When the 
error is large, a big contribution is made to the control signal.  When the error becomes small, 
the control signal remains large enough to hold the motor speed where you want it because 
the control signal depends not just on the current small value of the error, but also on the 
large past value. 

There you have the main idea behind PID control:  the control output is computed from the 
difference between the setpoint and the process variable, both in direct proportion, and 
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through integration over time.  As the name PID implies, there is also a third contribution, 
the derivative term, that is large when the error signal is changing rapidly, and small when 
the error signal is changing slowly.  Each term has its own gain, so you can control their rela-
tive importance.  Setting these gains is a bit of an art, known as “tuning the PID”, but before 
we can discuss how you might go about that, we need to get much more serious about how a 
PID really works.   

PID Math 

As we have just outline, let � be the value of something you would like to control, the pro-
cess value.  Let � be the setpoint, the value you would like � to have.  And finally, let � be 
the control value, the knob you turn to change the value of �.  

If � = � − �, then � is calculated by  

� = �� �� + 1�� ∫ �	� − �� ��� .	
Notice that there are three terms inside the large parentheses: the first term is proportional to �, the second term involves the integral of � over time, and the last term depends on the de-
rivative of � with respect to time.  Note that the so-called proportional gain, ��, multiplies 
everything, and therefore serves as a kind of overall gain.  This is not a requirement, but it is 
the way the PID algorithm is implemented in the standard LabVIEW routine. 

Let’s look at the effect of each of these terms.  The proportional term is simplest.  If � is 
large, then ��� will be large, resulting in a large � being applied to your system.  But as the 
system gets close to your control point, that is as � gets close to �, this term becomes useless.  
The error is going to zero, causing your control signal to go to zero.  As a result, a purely 
proportional controller has only two modes:  the small �� regime and the large �� regime.  
In the small �� regime, there is a steady state with a constant value for �. The output is con-
stant,  but can never quite be at the desired value.   As you increase ��, you can make that 
error smaller, but at some point the controller will flip over into the large �� regime where it 
oscillates.  This is not a good regime for a robot, at least a robot that wishes to remain in one 
piece. 

To get the error to zero, you need the integral term.  The effect of the integration is to build 
up a running total of the error.  As � approaches �, the proportional term drops away, but this 
built up integral term does not, and it is this term that provides � in the steady state, while at 
the same time allowing � to go all the way to zero.  As you think about the effect of this term, 
and the meaning of the integral, it may appear that the term will rise without limit, but don’t 
forget that the error can be negative, which will subtract from the total.   

The integral term also has another effect.  If the setpoint changes, the integral term will still 
be trying to hold the output at the old value.  It will only “forget” about the old value and in-
tegrate to the new value in a time of ��.  So if you set this value too high, the system will re-
spond too slowly to changes in the setpoint.  

Finally, we have the D term.  D stands for Derivative, but also Dangerous.  It can be used to 
control overshoot, but can make things oscillate, sometimes violently.   If possible, I leave �� = 0.  If I need some, I use very small amounts.  The default control for this value shows 
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only three digits past the decimal point.  I change the display format to show four or five, be-
cause that’s where I’m going to be setting values. 

Since we’re in a section called “PID Math”, it is worth discussing how the PID is actually 
implemented in LabVIEW.  Proportional control is easy.  We just need to calculate � =��
� − ��.  Fig. 6.1 shows the contents of a VI that would implement this.  Note the True 
value wired to the loop  terminal.  This loop executes only once (and is in fact not necessary 
right now, but will be useful in a minute), so the VI would need to be embedded in a While 
Loop (like the While Loop of a state machine controlling your robot).  

 

FIGURE 6.1  The block diagram for a proportional only control routine. 

How about the I term?  We need to numerically integrate the error with respect to time.  
There are many established ways of doing this, but we are going to use the simplest, known 
as Euler’s approximation.  (Cool people pronounce Euler, “oiler”.)  Remember, the PID con-

trol is inside a loop, and that loop is called every Δ seconds.  On the �$% call to this routine, 
we calculate the new value of the integral term, &'(�, according to 

 &'(� = &' + �	Δ. 
So, when the routine is called, it needs to have &' stored somewhere handy, it has to use it to 
calculate &'(�, and then it has to store that new value somewhere, like where &' used to be.  
There are lots of ways to do this, but a shift register is a very convenient one. Fig. 6.2 shows 
the code to implement this integration equation together with the proportional code.  As 
promised, the value of the integral is accumulated in a shift register.  A second shift register 
measures the time between successive calls to provide Δ. 

 

FIGURE 6.2  Code to add an integral control term to Fig. 6.1. Note the conver-
sion of Δ to seconds from milliseconds. 

Implementing a derivative term is very similar.  Now we need to have the error from the last 
call, �', and the error from this call, �'(� to calculate   ��� ≈ �'(� − �'Δ . 
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Fig. 6.3 shows the code with the D term included.  You could use the code in this figure as a 
PID controller, and it would do the job, but I don’t recommend it.  Use the PID routine pro-
vided in the PID palette, which does the integration using the trapezoidal rule (which adds a 
bit of accuracy),  and has a lot of other nice features.  For example, if you set Ti equal to ze-
ro, it turns off the integral control, giving you just a P (or PD) controller.  Our little toy ver-
sion doesn’t handle that so nicely.  If you’re curious, you can inspect the diagram of the 
LabVIEW routine to see exactly what it does. 

 

FIGURE 6.3  The full PID implementation.  The middle shift register holds the 
error value between calls. 

Motor Math 

Here’s the deal:  there’s no way to really understand how to use PID control without doing it.  
But maybe you don’t have a robot handy and ready for experiments.  Any maybe you don’t 
want to start by using PID control to convert your competition robot into scrap metal.  So 
we’re going to build a simulator:  a piece of software that behaves more or less like a real 
robot, and you can play with that.  And we’ll give you all the details, so that you will under-
stand how to modify the simulator so that it represents not the particular robot I’ve chosen to 
model, but whatever it is you are building for your own robot. 

So, to begin at the beginning:  electric motors.  Internally, DC motors have some permanent 
magnets and some coils of wire that act as electromagnets.  There’s some clever arrangement 
called a commutator to reverse the current at just the right time and keep the shaft (which 
carries the coils) turning in the right direction.  But that is not our concern here. (You should 
teach yourself about DC motors using the Web.  Here’s a nice place to start:  
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motdc.html)  Our concern is back emf.  
There’s a physical phenomenon that goes by the name Lenz’s Law, where a coil will resist 
any change in the magnetic field that loops through it.  The coil does this by generating a 
voltage, called a back emf, that opposes the voltage from (in the case of your robot) the bat-
tery.  As a result, if you were to connect the motor directly to the battery, the current through 
the motor would be given by  

* = +, − +-. , 
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where +, is the battery voltage and +- is the back emf.  . is the resistance of the coils inside 
the motor. 

Of course, we are not connecting the motor directly to a battery, but a driving it with an H-
bridge motor controller and setting the current with a pulse width modulated (PWM) control 
voltage.  If your controller is a Victor 884, then1 

* ≈ +, − 0-1. 2, 
where 2 is the duty cycle of the PWM, and I have replaced the back emf voltage by +- =0-1.  0- is a property of the motor, and 1 is its angular speed in radians per second.  If your 
controller is a Jaguar, Victor 888, Talon, or other “modern”, high-frequency controller, then 

* ≈ +,2 − 0-1. . 
This may not seem like much of a difference, but it actually matters a lot.  (For a derivation 
and discussion of these results, see http://vamfun.wordpress.com/2012/07/21/derivation-of-
formulas-to-estimate-h-bridge-controller-current-vex-jaguarvictor-draft/)   

Notice that in both cases, the current is decreased as the motor spins faster.  This decrease 
matters, because the amount of torque generated by the motor (that is available to you) is 

3 = 04* − 35 , 
where 04 is the torque constant for the motor and 35 is the internal friction in the motor.  So, 

as the motor speed increases, the net current through it decreases, and the available torque 
falls.  Eventually, the available torque drops to zero, which is what happens if you let the mo-
tor run with no load.  It reaches a maximum speed (called the free or no-load speed) and 
draws what is called the free current.  When you get a motor, its specifications will include 
values for the free speed and free current, as well as for the stall torque and stall current, all 
of which are valid for a specified voltage +. 

From these numbers you can approximately calculate 

04 = 36$788*6$788 , . = +*6$788 
and 

35 = 04
+, − 0-19:;;�. . 
If you work in a consistent set of units (i.e. MKS), then 0- and 04 will be numerically equal 
to each other, so having calculated 04, you know 0-.  Don’t forget to convert 19:;; to radians 
per second from RPM. 

Exercise E11:  Prove that 04 and 0- have the same units. 

At this point, we finally have enough theory to build a motor model.  We’ll model a CIM 
motor driven by one of the old Victor 884’s.  The table below gives specifications for all the 
motors we will be working with in this chapter. 

                                                 
1 Please.  The symbol 1 is the Greek letter omega.  Cool people definitely do not call it a “double u.”  
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TABLE 6.1 

Motor Stall Torque (oz-in) Stall Current (A) Free Speed (RPM) Free Current (A) 

CIM 344 133 5310 2.7 

RS755 61.1 30 7300 1.1 

9015 60.64 63.8 16000 1.2 

Fig. 6.4 shows the code for modeling a CIM driven by a Victor 884 controller.  The inputs 
are the duty cycle (varying from -1 to 1), and the angular frequency of the motor.  The output 
is torque in Newton-meters.  The False case just sends a zero value to the output (the motor 
can’t spin if it is not generating enough torque to overcome the internal friction).  You will 
need to build this VI.   

 

FIGURE 6.4  Code to model a CIM motor driven by a Victor 884 (old style) 
controller.  I’ve made the Label visible on the constants so the text moves with 
them. 

Driving Simulator 

Now that we have a motor, we can build up the rest of our model robot.  The motor provides 
torque, which is a function of the PWM duty cycle 2 and the motor speed: 3
2,1�. In our 
robot we will have four of these motors.  We will imagine that this is a “kit bot”, with a 
CIMple gearbox which gears down the speed of the motors by a factor 4.67.  Gearing down 
the speed gears up the torque by the same amount.  The chain drive gears the speed down 
(torque up) by an additional factor of 2.17 for a total gear train ratio of 10.11.  The kit wheels 
have a 6 inch diameter (< = 0.075 m), so if the motor torque is 3, the drive force propelling 
the robot is =� = 10.113/<.  

To make our robot a bit more realistic, we should include some friction.  Modeling friction 

turns out to be tricky.  If the robot is moving, then =5 = ?@� just has a constant value and is 

oppositely directed to the velocity (@ is the mass of the robot and ? is the coefficient of fric-
tion).  But if the robot is not moving, then friction is opposite to the applied force from the 
wheels, but exactly equal in magnitude.  Working that out, and letting the friction “break” 
when the applied force rises above some fixed value (I chose ?@�, the moving friction val-
ue, just to keep it simple) makes for a surprisingly complex VI.  My solution is shown in 
Figs. 6.5 and 6.6.  This VI takes the drive force as an input, and returns the net force =A;$ ==� + =5.  It also has additional inputs: velocity, mass, and coefficient of friction. 
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FIGURE 6.5  A friction model showing the case that the robot is moving. 

                 

FIGURE 6.6  Contents of the True case in Fig. 6.5.  The case that the middle 
structure is True is not shown.  It corresponds to the case that the drive force is 
not large enough to break friction and just passes a zero to Force Out. 

Now we can calculate the acceleration from B = =A;$/@, but how do we get the robot veloci-
ty?  If you’ve had physics with calculus, you know that 

C = ∫ B	�. 
And if you haven’t, well, I just told you.  And, if you are paying attention, you’ve noticed 
that we already encountered a very similar integration in our discussion of the PID algorithm.  
We tackled that integral with Euler’s approximation, so we can apply the same trick here.  
Our simulator will run in a While Loop, and a shift register will allow us to calculate 

C'(� = C' + B	Δ. 
So, it is time for you to build the simulator.  Fig. 6.7 shows the front panel, and Fig. 6.8 
shows the diagram.  Don’t worry about the contents of the cases not shown.  We’ll get to 
them.   

Look over the diagram first and make sure you can identify the salient features.  The upper 
shift register (orange line) contains the velocity as calculated by the above equation.  The Du-
ty Cycle is an input to the motor model, and the torque is the output.  This torque is multi-
plied by four (because we are modeling a robot driven by four motors), and then gets multi-
plied by the drive train ratio and divided by the wheel radius.  The resulting force is fed into 
the friction model, and the net force comes out the other side.  This force is divided by the 50 
kg mass of the robot to make an acceleration, which is integrated into the shift register.  The 
motor model and the friction both need a velocity input, for which we use the “old” velocity, 
not the new one we are about to calculate.  For the motor model, the linear velocity of the 
robot is multiplied by the same factor as the output torque to convert it to the angular fre-
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quency of the motor.  The friction model just takes the ordinary velocity of the robot.  That 
covers the basics. 

 

FIGURE 6.7  Front panel of the driving simulator.  You should actually start 
with the block diagram in the next figure, and refer back to this later. 

 

 

FIGURE 6.8  Block diagram of the driving simulator.  See the text for a detailed 
explanation. 

Now we come to some “bells and whistles”.  It is extremely useful to be able to watch both 
the velocity and the Target Speed (our setpoint when we get to the PID part) on a graph, so in 
the block diagram you can see them put together in a cluster and wired to the graph over on 
the right.  The chart moves extremely fast, however, as it plots 100 points per second, so I 
have included “slowing” code that causes only every nth point to be plotted, where n varies 
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from 1 to 10 and is controlled by a knob on the front panel.  The other case in the structure 
that contains the graph is completely empty. 

When trying to “tune” a PID controller, it can be extremely useful to have the setpoint switch 
between two values.  Fig. 6.9 shows the True case for the Cycle case structure.  Every 200 
iterations of the simulator we are toggling a Boolean (stored in a shift register), and the value 
of that Boolean controls whether Target A or Target B are written into Target Speed.  The 
programming here is a bit sloppy (but we are in a hurry).  Since Target Speed is a front panel 
control, only your personal self-restraint keeps you from wantonly manipulating that control 
while the Cycle code is supposed to be setting it to a specific value. 

 

FIGURE 6.9  Code to cycle the Target Speed between two fixed values. 

Now we finally come to the point of the entire exercise:  PID control.  Fig. 6.10 shows the 
True case for the Mode switch.  You can see that the Target Speed is wired to the setpoint 
input, and the (old) velocity is wired to the process variable input.  The output of the PID is 
the duty cycle input to the motor controller.  Since the duty cycle can only vary from -1 to 1, 
we limit the PID output to the same range.  We will need to manipulate the PID gains while 
the program is running, so those are brought to the front panel as a control.  Again, there is 
some sloppy code.  We pretend that the Duty Cycle control is an indicator during PID con-
trol, which allows you to use the front panel to fight the PID.   

 

FIGURE 6.10  The True case for the Mode switch.  This is the part we have 
been waiting for:  actual PID control. 

Once you put in the code in Fig. 6. 10, you are ready to drive.  Start by running the VI with 
Mode set to False, so you are doing the driving.  For amusement, turn on the Cycle switch 
and make the Target Speed toggle between 3.5 and -3.5.  See if you can keep the robot speed 
matched to the target by hand.  When you’ve had enough of that, switch to PID control.  The 
challenge now is to “tune” the PID to give the performance you want.  Start with P gain only.  
As a first guess, set the gain so that the maximum possible error gives an output of 1.  Notice 
that as you increase the proportional gain, the speed of the robot gets closer and closer to the 
target, but never quite gets there.  If you make the gain too large, the robot’s speed will start 
to oscillate (most easily visible in the Duty Cycle slide control), but because of the heavy 
mass and the friction, there is a very large window between enough P gain and too much. 
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When you think you have a good amount of proportional gain, try adding some I or some D.  
It would be best to be in Cycle mode so that you can see the effect of the integral term.  
While we would like the robot to snap to the new target speed as fast as possible, we only 
have a finite force available, and that is what ultimately limits how quickly the robot can ad-
just to a new setpoint.  But you should be able to tune it up so that the speed and accuracy if 
the control is pretty impressive. 

Turret Simulator 

The driving simulator was an example of speed control.  The other common application is 
positional control.  As an example, lets simulate an aiming turret, similar to what many FRC 
teams (including ours) had for the 2012 Rebound Rumble competition. 

Here is what we’ll simulate:  An 18” diameter turret with a moment of inertia of 2 kg m2.  
We’ll drive it with a Banebots RS775 motor mated to a 71:1 planetary gear reduction.  We’ll 
use a 1.5” diameter sprocket to drive the 18” diameter turret, so the total gear reduction is 
852.  You can copy your CIM motor model and just change the parameters to make an 
RS775 model.  For friction, copy your Friction VI, and modify it so that the input is not a co-
efficient of friction, but the actual frictional torque.  The rest of the logic is already correct, 
so that is the only change you need to make.  Fig. 6.11 is the block diagram you need to 
make.  It is a straightforward modification of the driving simulator, so I recommend you 
copy that for a starting point.  The front panel is so identical that I’m not going to bother with 
a figure.  You will need to change the limits on what is now Target Angle.  My turret swings 
between -45 and +45 degrees.  Also, the Frictional Torque is a front panel control. 

 

FIGURE 6.11  Block diagram for the turret simulator. 

If you look carefully at the diagram, you can see the similarity to the driving simulator.  We 
apply a Duty Cycle to the motor, obtain a (geared up) torque, reduce it by some friction, and 



96  

calculate an (angular) acceleration.  We integrate that acceleration to obtain the angular ve-
locity (in radians per second) of the turret.  To get position, we simply integrate again.  The 
integrated angle is in radians, but we convert it to degrees before applying the PID control.  
There’s no requirement to make this conversion, but people are better at degrees than radians, 
and this allows us to set the target position in degrees.  You will also notice that the chart is 
plotted in degrees. 

Once you have completed the VI, go ahead and start tuning the PID.  Start with a Frictional 
Torque of 1 N-m.  Again, start with only the P term.  You will find that this is a completely 
different kind of beast from the driving simulator.  Now we are no longer limited by the 
torque of the motor, and it runs at maximum speed while the turret is rotating (provided the P 
gain is large enough).  To rotate the turret faster, you need a different motor.  If you are hav-
ing trouble finding a good tuning, put the simulator into cycle mode and start with a very, 
very low P gain.  Every time the Target Angle switches, the turret will swing to the new posi-
tion, and then wiggle around that position, with the wiggles eventually dying out. Gradually 
increase the P gain until the wiggles don’t die off any more, then back it off just a bit.  Now 
you only need to add a small amount of either I gain or D gain to get rid of the wiggles (I’m 
not telling you which). 

Final PID Thoughts 

Before we move on to image processing, here are just a few musings on PIDs.  Bear in mind 
that these simulators present a highly idealized version of PID control.  In a real system, there 
will be noise on the sensor readings that give you velocity or position.  There will be back-
lash in the motion system, and many other challenges.  Tuning can be a nerve wracking expe-
rience when the consequence of getting it badly wrong is serious damage to your robot. 

As you think about what kind of control system you want, bear in mind that just as you are 
not required to use both the I and D terms, you are also not required to use either.  Suppose 
all you are trying to do is compensate for a non-linear motor controller so that your robot 
moves forward smoothly with the joystick, instead of doing nothing for the first bit, and then 
suddenly jumping.  In that case, you don’t really care if the speed gets exactly to the setting 
that matches the joystick position.  You are generally moving around trying to catch some-
thing or push something.  Close is close enough, and a P term is all you need. 

Problems 

Problem 6.1 – Change the motor in the Turret Simulator to the 9015 (see Table 6.1).  Inves-
tigate how this changes the turret behavior. 

Problem 6.2 – (Advanced)  The PID simulators are unrealistic on a number of levels, one of 
which is their lack of noise.  Fig. 6.12 shows the diagram of a “noise maker” VI.  This will 
provide you with random noise (approximately between -1 and 1, before you multiply it by 
Scale), but with an adjustable characteristic frequency.  You can set the Averaging input an-
ywhere from 1 to 100.  The larger the number, the lower the frequency of the noise. 

Try making the velocity in the Driving Simulator noisy.  Add the output of this VI into the 
velocity just after it is read out from the shift register.  Start with a Scale of 0.1, which is un-
realistically large, but makes things easy to see.  Try an Averaging value of 1.  Does the 
noise have a big effect?  What if the Averaging is 10?  100? 
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You can use this VI to explore the effect of noise on the output of the motor, or on the input 
from any sensor.  Just change the Scale input to give you noise of the appropriate size.  If you 
want to have more than one noise source in your VI, launch the VI Properties window (ctrl-
I), and select the Execution menu.  Check the “Reentrant Execution” box so that each copy of 
the Noise Maker has its own set of random numbers. 

 

FIGURE 6.12  Two views of the Noise Maker VI.  The right-hand diagram exe-
cutes only the first time the VI is called, and fills a 100 element array with ran-
dom numbers.  All subsequent calls to the VI use the left-hand diagram.  Aver-
aging and Scale are inputs, Noise Out is an output. 

Problem 6.3 – Make a new motor model for the Driving Simulator to use a Jaguar type con-
troller instead of a Victor 884. 
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Chapter 7 — Image Processing 
Image processing is also an advanced topic, but one that is a lot of fun.  The classic idea of a 
robot is a fully autonomous machine:  one that can sense the world around it and take action 
based on those inputs.  Vision is arguably the most powerful sense for humans.  With not too 
much effort, it can be a powerful sense for your robot too:  it will be able to track targets, aim 
itself, and measure distances.   

Doing it on the laptop 

Once upon a time, back in the dark ages, if you wanted to do image processing, you had to do 
it on your cRIO.  Since image processing requires a lot of computer power, a robot doing im-
age processing had trouble doing anything else.  But now we all have full-blown wireless 
routers on our robots, so images from the camera can go directly to your laptop, and you can 
do the image processing there.  Then you can send the results of that processing, which 
should only be a few numbers, or maybe even a single number, back to the robot so that it 
can aim, or move, or whatever. 

That being the case, in all the examples in this chapter, we’ll just be reading images from 
disk and running the programs on a PC.  Since you will learn by doing much more effectifly 
than you will learn by reading, be sure to obtain Secret Test Images.zip, which you should 
find where you found this book.  As you program your robot for competition, you’ll want to 
do something similar to what goes on in this chapter, as you  can easily have useful images 
available for programming well before your robot is ready for code.  Especially if you make 
the effort to set up the vision targets in some quick and easy way.  (The images in Secret Test 
Images.zip were taken of dummy targets glued to poster board and taped to a classroom wall.  
The camera was on a tripod, carefully set so it was at the correct height in relation to the tar-
gets.)   

Loading an image 

To get started, open up a new, blank VI (on your laptop…no cRIO in this chapter!).  Right 
click on the block diagram to bring up the Functions Palette (Fig. 1.8) and locate two sub-
palettes:  the FIRST Vision Palette, which contains most of what you need, and the Vision 
and Motion Palette, which contains even more image processing functions, a few of which 
you will also need.   

Fig. 7.1 shows a very simple program to load and display an image.  The first VI is IMAQ 
Create.  This allocates a block of computer memory which will hold the image.  LabVIEW’s 
memory management is sophisticated enough that it doesn’t need to know how big the image 
is (and therefore how much memory to set aside).  It just needs to be told that there is an im-
age coming, and what type it is.  In this case, the image is “RGB (U32)”, which means a col-
or image, where the color information for each pixel is encoded as three numbers:  the inten-
sity of the red, green, and blue color channels.  You also need to name this chunk of memory.  
I’ve chosen the not very imaginative name “RGB Image”. 

The next VI reads the indicated image from disk and slots it into that chunk of memory.  This 
VI needs the absolute path for the image, which in this case is rather long.  If you want to 
read in a bunch of files from a folder (using a While Loop, for example), you use stuff from 
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the File I/O and String palettes to build up the path names automatically.  (If you’ve gotten 
this far, you can probably figure out how on your own!) 

Finally, the image wire goes to a front panel indicator, which displays the image.  The front 
panel indicator has its own little tools palette.  It is useful to know that if you have selected 
the magnifier tool, holding down the shift key turns it into a de-magnifier.  Below the image 
is an information bar, which we will find extremely important.  Reading left to right, it tells 
you the size of the image, the type of the image, the color of the pixel the cursor is currently 
over, and the location of the cursor.  You should move the cursor around and make sure you 
understand where the point (0,0) is located, because that will be important. 

In the figure, the cursor is the little cross up in the sky above the building.   The color of that 
pixel given by the three numbers indicating the red, green, and blue intensities (in that order).  
These numbers are restricted (for this type of image) to the range 0 – 255.  A black pixel will 
have the value 0, 0, 0, while a white one will be 255, 255, 255. 

 

FIGURE 7.1  A simple program to load and display an image. 

How LabVIEW stores images 

The wire that represents an image variable is totally unlike all the other wires in LabVIEW.  
It should blink or something to remind you how different it is, but it doesn’t.  You just have 
to remember (which will turn out to be hard, because sometimes it will seem to you like the 
wires behave normally…). 
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Modify the simple image loading program so that it looks like the code in Fig. 7.2.  Start by 
adding the code to show both a number and its square root on the front panel.   (This is to 
remind you how “normal” wires behave.)  Then add a second image display indicator to the 
front panel, and make the image that will display in this second indicator a grayscale image.  
To do that, you need the Cast Image VI.  You find that by opening the Functions Palette and 

selecting Vision and Motion ► Vision Utilities ► Image Management ► IMAQ Cast Image.  
Set the Image Type to “Grayscale (U8)”, as shown in the figure, and run the VI.  Is this the 
result you expected?  How is it different from the little square root example?  What is going 
on? 

 

FIGURE 7.2  A program that is intended to display color and grayscale versions 
of the same image. 

The difficulty is that the IMAQ Create VI creates only one memory block.  Any VI that mod-
ifies an image modifies that one copy.  Any VI that then grabs that image, whether to display 
it, as in our example, or to perform further operations, grabs the one and only copy.  The 
standard LabVIEW programming model is that data values “flow” down the wires.  At a 
node like the orange dot in the square root code, the flowing stream divides, and independent 
copies of the data flow down each wire.  Images don’t flow.  When you connect a VI to a 
wire, you are not catching a copy of whatever is flowing by.  You are instead reaching out 
and grabbing the one and only “master” copy of the image. 

So, you would you display color and grayscale versions of an image side by side?  After all, 
it seems like a pretty reasonable thing to do.  If you examine the Cast Image VI carefully, 
you will see it has two image inputs:  “Image Src” and “Image Dst” (source and destination). 
To get a second, independent image, you have to allocate a second block of memory and 
make that second block the “destination” for a grayscale copy of the image.  Modify your 
program so that it looks like Fig. 7.3 and see whether gives you both color and grayscale. 

 

FIGURE 7.3  A working version of Fig. 7.2 
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You will find that many of the VIs you use in image processing work like Cast Image:  they 
have both source and destination inputs so you can either modify the original image, or put 
the modified data in a second image. 

Image types 

At this point we should probably take a little side trip and discuss image types, since we’ve 
already encountered two.  By “type” I do not mean “format”.  In FRC, you are most likely to 
encounter the JPEG format, since that is the default for the Axis camera.  But you are proba-
bly also aware that there are other formats like GIF and TIFF and PNG.  LabVIEW can han-
dle all of these, and it does so when the image is read into the program.  Once it is in the pro-
gram, it is a LabVIEW image, and the original format no longer matters, only the type. 

Think of an image as a two-dimensional array.  Each element in the array is a pixel in the im-
age.  It is what is inside these elements that determines the image type.   

If the image type is “Grayscale (U8), then the array element is a single unsigned integer that 
can have a single value from 0 to 255.  With only one “channel” available, the image can car-
ry no color information, only intensity information.  As a result, the image is “black and 
white”, or, as we sophisticates say, grayscale. (Unless we are subjects, or former subjects, of 
Queen Elizabeth, in which case we say “greyscale”. It has a completely different spelling.) 

If the image is a color image, then each element contains three independent numbers.  If the 
color mapping is RGB, then the three numbers give the red, green, and blue values for the 
pixel.  These numbers are all 8-bit unsigned integers, and so can have values from 0 to 255.  
For reasons of convenience and memory management, LabVIEW packs these three numbers 
together into a single 32-bit integer, which is why this type is called “RGB (U32)”.  If you 
are still awake, you will notice that three color channels times 8 bits per channel makes 24 
bits, not 32.  From a data handling and storage point of view, a 24-bit integer is a very ugly 
duckling, so it is worth carrying eight unused bits to make things nice. 

While you do need three numbers to specify the color of a pixel in a color image, there is no 
law of nature that says they need to be red, green, and blue.  They could be Hue, Saturation, 
and Luminance, in which case the image type would be “HSL (U32)”.  Once again, each pix-
el is described by three 8-bit numbers, but the information is encoded completely differently.  
A good analogy is specifying a coordinate in three dimensions.  (OK.  This is only a good 
analogy if you’ve seen this before in your math or physics class.  Otherwise it is completely 
useless.)  You can locate that point by specifying positions along three axes as in 
D, E, F�.  
You can also specify that same point in spherical coordinates, in which case you specify a 
distance from the axis and two angles:  
<, G, H�. Possibly this image type will be useful to 
you.  We will get to that in a bit. 

If you look at the options on IMAQ Create, you will see that your other options for encoding 
the pixel are 48-bit color, 16-bit integer (both signed and unsigned), and both real and com-
plex numbers.  These all have their place, but that place is probably not FRC. 

Before we move on, there is one last topic related to image type.  Your computer’s display is 
a color display.  If the image is color, there is really no flexibility about how to show it on 
your screen.   But if the image is grayscale, then we are using a single number to specify the 
value of three numbers (the red, green, and blue pixel intensities on your screen).  This is 
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done with a look-up table, usually called a palette.  So, if the image pixel value is 37, the dis-
play software looks in the palette for entry number 37.  There is will find three separate num-
bers, telling it what red, green and blue intensities to use to display this pixel.  To get the 
grayscale image when you ran our little example, LabVIEW used—no surprise—the Gray-
scale palette.  In this palette, all three numbers are set to the same value (which would be 37 
in the case that the pixel value is 37).  But other choices are possible!  If you go back to the 
front panel of our example, and right click on the grayscale image, you can find the palette 
menu, as shown in Fig. 7.4.  Try the other palettes.  Believe it or not, we will find the Binary 
palette to be extremely useful, in spite of the fact that it makes the sample image look like 
some kind of hallucination.  Bear in mind that when you change the palette like this, you are 
not changing the image, only how it is displayed on your screen. 

 

FIGURE 7.4  The display palette, which affects how grayscale images are dis-
played, but not color images. 

Getting images 

Our goal is to process a color image like the one below in Fig. 7.7 and return information 
about the targets:  where in the image they are located, and how big they are.  For learning 
purposes, you can work from the images distributed with this book.  But once the new com-
petition is announced, you should work as quickly as possible to generate test images that 
come as close to real competition images as possible.  To that end, you need to be able to use 
your robot camera to take test images, as was done to create the test images included with 
this book.  The program shown in Fig. 7.5 will do that for you.  The front panel has a vision  
display and a button.  The program runs on your laptop (not your cRIO) and continuously 
acquires and displays images on your laptop.  (Use an Ethernet cable to directly connect the 
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camera to your computer.)  When you press the Snap button, it will take whatever image it 
currently has and write it to disk, after prompting you for a file name. 

You will notice that the camera IP address is set to the FRC default (10.te.am.11).  That 
means your computer needs to be on that network.  The easiest way to make that happen is to 
launch the Driver Station.  You will also probably have to disable your wireless card so that 
Windows is not confused about which network to use.  (There is documentation on the 
FIRST web site telling you how to set the IP address on your camera.  The FRC LabVIEW 
distribution includes a utility program that will do it for you.) 

 

FIGURE 7.5  Program to acquire images using an Axis camera. 

Getting good images  

Now that you know how to get images, you need to get good images, because that’s what 
good image processing starts with.  How much control you have over the images coming in 
from the camera depends to a certain extent on the game.  In recent years (2011 – 2013), the 
things you want to find have been marked with retroreflective tape, which gives you a fair 
amount of control.  In the 2010 Breakaway competition, the vision target was a high contrast 
black on white target, while in the 2009 Lunacy competition the objects to look for were 
marked with bright fluorescent colors.  The apparent brightness of those markers, and to a 
certain extent their apparent color, were a function of the lighting on whatever competition 
field you happened to be on.  That kind of variability can be a challenge. 

 

FIGURE 7.6  An “angel eye” ring light mounted on a camera.  Note the piece of 
duct tape used to keep the adjustable focus from being accidentally adjusted. 
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If the competition uses retroreflective tape, then your task is much easier.  Put a ring of LED 
lights around the lens of the camera.  The kind you want go by the term “angel eyes”, and are 
used as decorative accents on automobiles.  They are quite bright, and are designed to run 
directly off 12V DC power, which is quite convenient.  Fig. 7.6 shows a small one of these 
LED rings mounted on an older model Axis camera, while Fig. 7.7 shows a set of targets il-
luminated by those LEDs.  Note that the lighting conditions are otherwise crummy.  In par-
ticular, the ceiling lights could be expected to be trouble, but the combination of the reflec-
tive tape and the light source tightly positioned around the camera lens makes the targets 
“pop”.  You can buy much larger angel eyes with many more LEDs, and you may want to 
put them on your robot because you just want to, but for lighting up a retroreflective target, a 
small one is all you need. 

 

FIGURE 7.7  A test image with four retroreflective targets illuminated by a sin-
gle, small “angel eye”.   

Actually, there is one other trick that can really help here.  The camera was prepared by aim-
ing it at a clean white wall that was illuminated by a  500 W halogen work light.  It was pain-
ful to look at, it was so bright.  The camera was allowed to automatically determine the expo-
sure for this really bright scene, but then that exposure setting was locked and made perma-
nent.   

You can use a web browser to log directly into the camera and make these ad-
justments.  If you don’t have a manual that tells you how to do this, you can 
download one directly from the Axis web site.  

 

If the camera is allowed to adjust its exposure, then the relative brightness of the targets will 
be changing as your robot moves around, and you would like to avoid that.  With the expo-
sure locked, and the light source for the targets in a fixed position relative to your camera, the 
appearance of the targets should not vary much from image to image.  Because of how the 
retroflectors work, if another robot is lighting up the target at the same time as yours, your 
camera will not “see” any of their light, only your own, which is a pretty neat trick. 
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Choosing your colors 

Your first task is to find out what color your targets are.  To do that, you should code the 
program shown in Fig. 7.8.  This program reads in an image and displays it twice, once as an 
RGB image, and once as an HSL image.  They don’t look any different, but the way in which 
the color is encoded is very different.  The easiest way to see that is to look down at the bot-
tom of the figure.  You can see that for both images, the cursor (not shown) was on the pixel 
at (506,306).  To the left of that are the three color values.   The two sets of numbers are very 
different.  In the left image, since the cursor was sitting on one of the targets, the blue chan-
nel as a very high value, while the red and green channels are at or near zero. 

The HSL image is more complicated.  The color space is best thought of using cylindrical 
coordinates, <, F, and G.  The angle, G, is the color coordinate, hue.  Red is at 0/0°/0 (I’m giv-
ing you three different names for the same angle here).  As G (hue) increases, the color shifts 
through orange and then yellow until at 85/120°/2L/3 it is pure green.  Increase the hue val-
ue more, and the color shifts through cyan to pure blue at 171/240°/4L/3.  Increase G (hue) 
and the color shifts through magenta and back to red at 255/360°/2L .  Saturation is the radi-
al coordinate.  If < is small, then the pixel has a nearly equal amount of all colors and is, as a 
result, gray rather than colored.  As < (the saturation) value increases, the pixel becomes less 
and less gray, and more purely the color that corresponds to the hue value.  When that satura-
tion value is 255, then the color of the pixel is said to be “saturated”.  If it happens to be a 
blue pixel, it just can’t get any bluer than that.  Finally, the F coordinate is luminance.  If F = 0, the pixel is black, and the hue and saturation values don’t matter.  As F/luminance in-
creases, the pixel becomes brighter.  At a luminance of 255, the pixel is completely white and 
again the other two values don’t matter.  The pixel is most colored at luminance values 
around 128. 

OK.  What about the confusing graphs in Fig. 7. 8?  These are histograms.  We’ll start on the 
left, because it’s easier.  Look only at the red curve to start.  The horizontal axis is the chan-
nel value (the red channel in this case, because I set the graph up to plot the red data using a 
red curve.  Pretty subtle, don’t you think?).  The vertical axis tells you how many pixels have 
that particular channel value.  For example, about 12,000 pixels in the image have a red value 
of 40.  So, the meaning of the green and blue curves is pretty obvious.  There is a hump in all 
three curves in the range 25 to 75.  This is most of the pixels in the image.  These are low 
values because this is overall a pretty dark image.  The exception is the blue curve up above a 
value of 240.  These pixels are the targets.  (Note that unlike the example in Fig. 7.7, this im-
age does not include any ceiling lights, or other bright white light sources.  If you have some 
of those in your image, figuring out how to find the target gets much harder.) 

The histogram for the HSL image is much harder to interpret.  Again we start with the red 
curve, which is the graph of hue values.  Whatever you might call the overall tone of our test 
image, you would not call it red.  As a consequence, the hue value is zero at zero and again at 
the high values up near 255.  In fact, almost all the hue values seem to be in the range from 
about 80 to 170:  the green/blue part of the color spectrum.  The curve is very spiky in this 
region.  Which spike represents our targets?  The narrow peak at about 170, although that is 
not immediately obvious.  Whatever color our targets are, they are very much that color.  
They are highly saturated; there’s nothing gray about them at all.  So the spike in the green 
curve (saturation) at 255 contains our target pixels.  But the image is overall pretty dark, even 
our targets.  So the blue curve (luminance) has no high values.   Our target pixels are 
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somewhere in that spiky hump, evenly mixed in with all the rest, so we can’t specify a range 
of luminance values that will pick them out. 

 

 

FIGURE 7.8  Code and front panel for a program that takes an image and displays two histo-
grams:  one for an RGB version of the image, and one for an HSL image.  Also shown is the 
image itself.  Although the cursor is not shown on the images, you can see that the info panel 
at the bottom is showing the RGB and HSL values for the same pixel.   
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So, what was the point of this exercise?  To specify three color values that together represent 
a target pixel, and definitely do not represent a non-target pixel.  Actually, we don’t want to 
specify, for example, a single blue value, or single hue value, but a narrow range.  Looking at 
the histograms can help us decide whether the job will be easier for an RGB encoded image, 
or an HSL encoded image.  For this particular case, I’d go with RGB.  If we scan the image 
for pixels that have a blue value in the range from something like 128 up to 255, we will find 
our target pixels.  In addition, if we demand that the red and blue values are small, we won’t 
get confused by white lights, and will find only our target pixels.   

Finding the BLOBS 

This is where the actual image processing starts.  “BLOB” is image processing short hand for 
“binary large object”.  All the cool kids are saying it.  So start by modifying the code from 
Fig. 7.8 so that it matches Fig. 7.9, which shows a pretty cool piece of magic.  The right hand 
image display uses the Binary palette (and will just appear black if you forget and leave the 
palette as Grayscale.  Figure out why!)  The VI that is doing all the work is called IMAQ 
ColorThreshold.  You need to tell it what kind of image you are giving it (RGB in this exam-
ple), the ranges for the pixels it should “find”, and the replacement value, which is 1.  Pixels 
whose RGB values match the range will be set to the replacement value.  All the others will 
be set to zero.  Because you want to compare the “found” image with the original, you need 
to allocate two memory blocks (in your actual competition code, you may want to skip dis-
playing the RGB image—or even any image at all!).   

 

 

FIGURE 7.9  The first stage in BLOB finding:  identifying the target pixels. 
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Don’t just run the code with the RGB ranges shown.  Experiment so you get a feel for how 
things behave.  How high can you have the red and green values and still exclude the ceiling 
lights?  Your goal here is to find a set of ranges where the actual range values don’t matter.  
That is, if you raise or lower a range value by 10, the same pixels are still identified as “tar-
get”.  If you are comfortably in the middle of this “it doesn’t matter” zone, then your target 
finding will be robust:  small changes in the target color due to changes in field lighting or 
robot position will not affect your ability to find what you are looking for. 

Now that we have found our BLOBs, we need to analyze them.  Fig. 7.10 shows a modifica-
tion to our sample program.  I’ve cut off the boring stuff showing how the image is read from 
disk, and I no longer show the original image.  There’s a lot of new stuff here, so we’ll take it 
one VI at a time. 

 

 

FIGURE 7.10  A complete BLOB finding program. 
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You can see that the first VI is the thresholding VI from Fig. 7.9.   The next VI is IMAQ 
Convex Hull.  This VI takes each blob in the image and fills it in.  Obviously the large re-
gions in the center of the target have been filled.  But it also smooths the edges a bit, because 
it wraps an imaginary string around the object and pulls it taught.  All the pixels inside that 
string are then filled in.   

Next is IMAQ Particle Filter 3 (there have been several versions of the particle filter over the 
years.  The number lets us know which we are using).  This VI is doing two important things 
at once.  First, it is eliminating any particles that are too small to be a target.  There are none 
in this perfectly lit test image, but in many circumstances you can get reflections from shiny 
bits, or lights on the field that are detected as particles.  We don’t want to aim our robot 
based on these, so we eliminate them with this filter.  Anything with an area less than 1000 
pixels won’t show up as red in our binary image.  (You will need to figure what is the right 
area setting for this filter for the competition you are coding for!). 

The other thing this filter is doing for us is eliminating any blobs that touch the edges of the 
image.  We are going to use geometrical measurements on these rectangles.  If one of them is 
cut off by the edge of the camera frame, then we have no way of telling how big it is, or even 
where it is precisely located in the field of view.  If we eliminate these targets, then we don’t 
have to worry about accidentally using bad information.  You may not want to do this in all 
designs, but for this set of targets, it’s a good strategy. 

The next two VIs have nothing to do with actual blob finding, but if you want to draw lines 
on an image, here’s how to do it.  

Finally, there is IMAQ Particle Analysis Reports, which returns a set of standard measure-
ments on each blob.  Create the indicator, and then look at the front panel to see what you 
get.  The output is an array of clusters.  The size of the array is equal to the number of parti-
cles found.  You actually have two choices here.  There is a VI, found under the Motion and 
Vision sub-palette, called IMAQ Particle Analysis.  This second VI allows you to choose 
which properties of the particles are measured and reported.  There are a huge number of 
them to choose among.  For this example, we are using the “Reports” version because it is 
simpler and has everything we need: location and apparent dimensions of each target.  Be 
aware that both versions of the particle analysis routine give you the results in both camera 
pixels and “real world” units.  We need to use the pixel outputs because we don’t know the 
calibration factor needed to convert pixels to real world units (e.g., centimeters).  In fact, de-
termining that conversion factor is, in a way, what we will be using the camera for.  

Camera Optics 

Before we can figure out what to do with the information we’ve obtained from processing 
our images, we need to make a small digression into optics.  Fig. 7.11 shows a top view of 
the camera in front of the targets, which we assume to be all together in one plane.  This 
plane is imaged onto the CCD chip in the camera.  If this was an actual optics course, we’d 
call the plane of the targets the image plane, and the plane of the CCD the image plane.  
We’d also discuss how the image is inverted, but since the camera software takes care of that 
for us, we’ll just skip the whole thing.  The key thing here is the angle GQ, which is the hori-

zontal field of view of the camera.  If you have the older model Axis camera (the model 206), 
this angle is specified to be 54°.  If you have the newer camera (Axis model M1011), it is 
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specified to be 47°.  As you will see in a bit, this number is not quite right, at least for the 
older camera.  We’ll see how to use test images to determine exactly what it should be. 

There are three ways to talk about the field of view, and for what we’re doing here, you want 
to keep all three of them in your head at once.  The first way is as an angle, as we’ve just 
mentioned.  The second way is as the number of camera pixels.  This depends on how you 
have the camera resolution set.  In the test images supplied with this book, the field of view is 
640 pixels.  (It is probably a bad idea to use that high a resolution in competition.)  Finally, 
the field of view is a physical distance, in centimeters for example, or inches if you are fond 
of that dead English king.  This is the least well defined definition, but also an important one.  
It depends on how far the camera is from the things it is looking at, and also on what those 
things are.  The simplest case is when the camera is aimed directly at a flat wall.  Then the 
field of view is simply the measured distance from the left most point on the wall that is 
within the camera frame to the right most.  And in fact, we are going to pretend that all the 
cases of interest are pretty much like this simplest case. 

 

FIGURE 7.11  The basic camera geometry.  In this view we are looking down 
on the camera and targets, so the field of view is 640 pixels wide at full camera 
resolution. 

Finding the target distance 

As you may have already guessed, we are going to continue to use the vision targets from the 
2012 Rebound Rumble completion as our example for image processing.  That was an excep-
tionally good year for using image processing, as the placement of four large targets in a sin-
gle plane allowed for some very sophisticated and precise determinations of the robot posi-
tion. From this one example, which we will look at in detail, you should be easily able to 
generalize and develop solutions for the actual competition you are trying to solve. 

Let’s start with the target geometry, which is shown in Fig. 7.12.  Imagine that the camera is 
some distance back from this pattern and is pointing straight at it.  We want to find that dis-
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tance, labeled � in Fig. 7.13, which is now a side view.  The height of the field of view is R.  

Because the CCD is only three quarters as tall as it is wide, the vertical angle of view is 
ST GQ,  

 

FIGURE 7.12  Target geometry from the 2012 Rebound Rumble competition.  
Units are in twelfths of the shoe size of a dead English king. 

and thus the half-angle indicated in the figure is 
SU GQ.  The dots in the image represent two 

points that we can reliably find using our image processing routines.  For example, they 
could represent the locations of the center-of-mass for the highest and lowest targets in the 
pattern of four in Fig. 7.12.  The real world separation between these two points, E, is 70 

inches.  The vertical separation between these two points in camera pixels is EV, which we 

can compute from the data output by our blob finding routine.  Finally, we know how tall the 

field of view is in pixels:  it’s just the vertical size of the image, which we will call RV.  Be-

cause the camera lens scales everything by the same amount, the ratio of the actual size of 
any object and its size in camera pixels is a constant.  This includes the height of the field of 
view.  Therefore we can write EEV = RRV. (7.1) 

The only thing in this equation we don’t know is H, the real-world height of the field of view 
at the target distance d, so we can solve for it. 

From Fig. 7. 13, it should be obvious that 

tan �38 GQ = R2� . (7.2) 

In this equation, the only unknown is � (assuming we have already used the previous equa-
tion to find R), so we can solve for it and know how far our camera (and therefore our robot) 
is from the targets. 

Actually, we can do way more than that.  And we can start with using the camera to get a bet-
ter value for the field of view.  To do that, we need to process a whole bunch of images from 
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the package of test images that accompanies this book.  Start by adding something like 
Fig. 7.14 to the end of your code from Fig. 7.10.  What I’ve shown here represents my per-
sonal style, not some absolute requirement.  You have some basic information on each blob.  
How you want to organize it is up to you:  you have your own style. 

 

 

FIGURE 7.13  Geometry for using a known vertical distance to compute the dis-
tance to the targets. 

 

FIGURE 7.14  Organizing the data from the blob finding routine. 

The first thing to notice in this code is that I have offset the data so that the point (0,0) for the 
coordinate system is in the center of the image instead of the upper left corner.  Once the 
loop has completed,  the code sorts the data so that it is ordered by the height of the blob E 
coordinate, from highest to lowest.  Once this piece of code has been added, you can take the 
whole blob finding routine and package it into a sub-VI.  Then you can use this sub-VI in a 
program like the one shown in Fig. 7.15. 

There’s a lot going on in this program, and it’s positively crammed together to make it fit on 
the page, so we’ll take it one step at a time, starting from the left.  The images in the test 
package are all named by the distance from the camera to the target, in feet, and the angle of 
the line the camera was moved along to take the images.  This routine reads in the zero de-
gree images (the ones taken with the camera placed along a line perpendicular to the targets).  
If you are really paying attention, you will notice that the zip file contains images taken at 10, 
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11, and 12 feet from the targets, but that we do not read them in.  That’s because the lowest 
target is clipped in those images, and the code is much simpler if we don’t try to analyze 
those images too. 

 

FIGURE 7.15  Code to read in a series of images, compute the distance from the 
camera, and make a graph of computed distance vs. actual distance. 

Each image is fed to the Find Blobs routine, and out comes an array of clusters (the clusters 
built using the code in Fig. 7.14).  The difference between the vertical position of the highest 

target and the lowest target is used to compute EV.  That difference then goes into a bunch of 

math.  You should convince yourself that this math does exactly the computation Eqs. 7.1 
and 7.2 to find �.  Also in there is code to take the actual distance to the target, as given in 
the name of the image, and convert it from feet to inches.  This actual distance is then bun-
dled with the computed distance, and used to make a graph of computed � vs. actual �.  At 
the same time, a VI from the Mathematics: Fitting sub-palette is used to find the slope and 
intercept of the resulting line.  Note that the control “theta” represents GQ, and we’ve made it 
a control because we plan on changing it.  There is also a constant “offset” in there, which we 
will get to in a minute. 

Fig. 7.16 shows the important part of the front panel for this program after it has been run 
assuming that the camera specified view angle of 54° is correct.  But it is not correct.  For 
example, when the actual distance is 180”, the computed distance is 175”.  More importantly, 
the slope of the line is not 1, so that this error gets larger for larger distances.  Because the 
slope is less than 1, it must be that our value for GQ is too large.  You doubt me?  Work it out 
for yourself.  In fact, it must be that tanHtan 20.25° = 0.925132. (7.3) 

If you are very clever, you will note that 20.25° is three eighths of 54° , so H must be three 
eighths of the corrected view angle.  If you do this math, you find that it would be more accu-
rate to use a value GQ = 50.25°.  Use that as theta and run the program again.  Then take the 
intercept value (which should be 9.17449, or close to it) and use that as the offset constant in 
the program.  When you run the program again, you should find that the computed distance 
matches the actual distance rather well.  To test whether this is robust, modify your program 
so that it reads in the images taken at 10° or 20° off of perpendicular.  You will have to be 
clever because these were taken only every 2 feet.  It works terrifyingly well. 
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FIGURE 7.16  Partial front panel for the code in Fig. 7.15.  It has been run with 
the “default” view angle of 54° and with the constant “offset” equal to zero. 

Bear in mind that what we have done here is just the simplest thing.  In “real life”, which is 
to say, in a competition, the robot might be so close to the targets that one is clipped (like in 
some of the test images).  But you could easily write code to figure out which target is miss-
ing and use the rest of the target information to compute the distance.  You could even use 
the height of a single target as your known E, but in that case you should not expect to be 
able to compute the distance within 1%, as we can using a larger E. 

Exercise E12:  Write code that automatically computes the distance to the targets for all the 
images in the test package, including the ones with clipped targets.  (Hint:  You can improve 
the accuracy if you use a different value for the offset when using only the upper three tar-
gets.) 

Advanced Stuff 

Fig. 7.171717 shows a top view of the camera and the targets, plus a lot of other circles and 
arrows.  All that’s missing is a paragraph on the back explaining what it is.  (If you are under 
the age of 50 and get that joke, you have just earned 10 Obscure Cultural Reference Points.) 
The centroids of the targets are represented by the solid black dots.  You will notice that the 
camera is neither centered on the targets, nor pointed at the center of the targets.  Instead it is 
pointed just inside the right hand target.  Remember how I said we were always going to pre-
tend the camera was pointed directly at a wall?  That’s the dotted line, perpendicular to the 
camera axis.  The left and right edges of the camera frame are denoted by the little triangles.   

In the plane of the targets, the left and right targets are separated by a distance D.  But to the 
camera, they appear a little bit closer together than that, as indicated by the open circles.  It 
should not be hard to convince yourself that this reduced distance is not exactly, but to a very 
good approximation, equal to D cos ].  Therefore we can construct the identity, analogous to 
Eq. 7.1,  
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 D cos ]DV = ^̂
V. (7.4) 

If we first use the vertical separation between the center targets to find �, as in the last sec-
tion, then the only thing we don’t know in Eq. 7.4 is ].  (Because if we know R, then we can 

find ^ from ^ = TSR for the Axis camera.) 

 

FIGURE 7.17  Analyzing the image in the case that the camera is off-axis and 
not pointing directly at the center of the targets. 

Now, suppose that the horizontal distance, in pixels, from the center of the image to the cen-

ter of the target pattern is _V.  Then you can easily find the angle ` − ] from 

` − ]GQ = _V
V̂. (7.5) 

At this point we know everything there is to know about the camera:  we know its position on 
the field (in a cylindrical coordinate system centered on the target pattern) and its orientation.  
If the camera is bolted to a robot, we know the same things about that robot, which might 
prove useful… 

Exercise E13:  Write code to determine ` and ] for the images in the test package, at which 
point you will have earned your Image Processing Zen Master merit badge. 
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Chapter 8 — The Dashboard     
What is the Dashboard?  It’s a piece of LabVIEW code that runs on your laptop.  It can re-
ceive and display data from the robot.  It can receive and process images from your camera.  
And it can send data to your robot.  This data can come from image processing, from auxilia-
ry electronics plugged into your laptop and read by the Dashboard, or from front panel con-
trols on the Dashboard itself. For example, you could process an image to determine the dis-
tance from a target, send that distance to the robot, which could then execute a move based 
on that distance. 

The Dashboard was first mentioned way back in Chapter 3 where all we wanted you to do 
was ignore it.  It is automatically launched when you start the Driver Station, and the default 
configuration looks like Fig. 8.1.  If your camera is powered up and attached to your robot’s 
wireless access point, you will get a live image in the upper left, although your camera might 
not see Rio unless you have the special lens installed. 

 

FIGURE 8.1  The Driver Station and the default Dashboard. 

We will go into some detail on how the Dashboard actually works, so that you have the 
knowledge you need to modify it.  But in order for any of that to make sense, you need to 
have a basic idea of how information is passed between the Dashboard and the robot. 

Basic Dashboard Communication 

As of the 2013 season, this is easy.  The actual system that implements this communication 
(a network table) is complex, but you don’t need to know anything about it.  Suppose you 
have a Boolean value generated by your Dashboard code that you want to send to the robot.  
In your Dashboard, you implement something that looks like Fig. 8.2. 
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This bit of code has two essential parts:  the text input you use to name this piece of data, and 
the data value itself.  In the figure, the actual data control and the text field have the same 
name.  That has a certain logical appeal, but is not a requirement.  The data comes in on a 
wire, after all, and so is actually nameless. 

 

FIGURE 8.2  Putting a Boolean value into the network table.  Note the pen-
cil to indicate that we are writing data.  

Down on your robot, to read this value you implement something that looks like Fig. 8.3.  
This kind of code can go in Periodic Tasks, Autonomous Independent, or Teleop.  Here we 
again need the name under which the data was stored.  If this name doesn’t match the storage 
name exactly, then you will get an error instead of your data.  (This method of naming for 
storage and retrieval should remind you of the way in which we name things like motors and 
sensors in Begin.vi so we can refer to them in other parts of the robot code.) 

 

FIGURE 8.3  Reading a Boolean value stored in the network table.  Note 
the cute reading glasses to indicate that we are reading data.   

Now, suppose you want to go the other way.  What do you do if the robot has a Boolean val-
ue (say, the status of a limit switch) you would like to be able to display on the Dashboard?  
The code is exactly the same! Just put the store code (Fig. 8.2) on your robot, and the read 
code (Fig. 8.3) in your Dashboard.  Very simple.  Very nice. 

Probably not every piece of data you need to pass is a Boolean.  Not to worry, if you look at 
the Dashboard palette (a sub-palette of the WPI Robotics Library palette), you will see (as in 
Fig. 8.4) that there are six different data types you can read and write:  single Boolean, Dou-
ble Precision Real, and String values, and arrays of these three types.  There are also poly-
morphic VIs that let you choose which of the six types to use after you’ve dropped them into 
your diagram. 

 

FIGURE 8.4  The dashboard palette.  The polymorphic VIs are the ones 
with “???” as their type.  We will not need to mess with the more advanced 
stuff in the bottom row. 
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The Dashboard Project 

To understand the Dashboard, we have to look at the code.  To look at the code, you need a 
copy, which you can get by creating a new Dashboard project.  Open LabVIEW and from the 

Getting Started screen, under New, click on FRC Dashboard Project, which should bring up a 
window as shown in Fig. 8.5.  As with your robot project, you need to name it and select a 
location for the file.  I recommend the same location as your robot project.  None of the file 
names conflict (unless you create that problem for yourself), and it becomes that much easier 
to back up everything associated with the project. 

 

FIGURE 8.5  The Create New Dashboard Project window. 

As with the robot, you will get a project tree, although in this case it’s quite a bit simpler.  
The only file of interest to us is Dashboard Main.vi.  Go ahead and open that file.  The code 
you see will be terrifying at first.  It’s also the code you will need to modify to make your 
own Dashboard, so we’d better explain it enough so it’s not quite so terrifying. 

Under the Hood (or Behind the Dashboard) 

I’m going to reveal here that I have an evil intent.  A well designed Dashboard that is useful 
in competition will have just a few key indicators.  These indicators will be very large, so 
that the information they contain can be read with a quick glance out of the corner of your 
eye.  This is not the default Dashboard, which has been designed to provide you with a lot of 
information that might be useful in debugging your robot, but not in competition.  So, I ex-
pect you to delete most of the provided code in the Dashboard, thus shoving a dagger straight 
through the hearts of the programmers who clearly worked very hard to create a complex and 
highly functional piece of software.  Oops.   

OK.  That might be extreme.  But at the very least, some serious renovations are in order.  
We’ll discuss alternatives to deleting nearly everything at the end of the chapter when we 
discuss Dashboard strategies. 
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Loop 1:  Simple Data Communication 

The default Dashboard has seven while loops that run in parallel, plus some extra bits of 
code.  Loop 1 is shown in Fig. 8.6.  The stuff outside the loop on the left has mostly to do 
with inter-loop communication and doesn’t concern us.  The stuff to the right of the loop is 
mostly a way of labeling stuff on the front panel, and again doesn’t concern us. 

This loop executes every time a data packet arrives from the Driver Station.  In the default 
configuration, it is used to update diagnostic displays, mainly shown in the central part of the 
Dashboard, as highlighted in Fig. 8.7.  This is the most straightforward way to get data to and 
from the robot.  You simply put one half of a read/write pair, as in Figs. 8. 2 and 8. 3 inside 
the case structure, and the other half where you need it in your robot code.  If you open the 
default Teleop code, you will see exactly that read/write pairing, although as it happens all 
the writing is on the robot and all the reading is on the Dashboard.   

 

FIGURE 8.6  Dashboard Loop 1. 

      

FIGURE 8.7  Data displays used by Loop 1. 

In creating a custom Dashboard, you should keep this loop, but you don’t need to keep much 
that is in it.  If you don’t want to display the joystick and motor data, you can delete all these 
indicators, and with them the reads from the network tables.  The four MotorName controls 
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outside the loop on the right could go as well.  Outside the case structure, there are indicators 
for the battery voltage and IP addresses.  If you don’t feel you need these on the Dashboard, 
they can go as well.  Keep the two Driver Station related VIs.  We haven’t discussed Loop 3 
yet, but bear in mind that if you decide you don’t need Loop3, then you can remove the case 
structure in Loop 1.  Once you do that, the “Robot IP Update” notifier and related wiring can 
go.  I strongly recommend keeping the “Window Mode” notifier though.  As you add your 
own code, don’t be afraid to expand this loop to make as much room as you need to fit all 
your data writing and reading in. 

Loop 2:  Image Acquisition 

Images are acquired and processed in Loop2, shown in Fig. 8.8.  This loop acquires images 
from the Axis camera.  Outside the case structure is some code that should remind you of the 
code in Fig. 7.5.  It’s a bit fancier because there is a front panel switch to turn image acquisi-
tion on and off, and because it is possible to change the camera IP and settings while the pro-
gram is running. 

 

FIGURE 8.8  Loop 2:  image processing. 

Inside the loop there is code that is mostly not essential.  The upper bit displays the data 
bandwidth being used by the images, and controls the color of a little Boolean.  If your cam-
era settings are using too much bandwidth (above 3.5 megabits per second) the indicator will 
go from green to yellow.  If the demanded rate gets above 5.5 Mbps, the indicator goes red.  
At the bottom is a computed frame rate.  If your demanded bandwidth is low enough to keep 
the indicator green, then you should see that the actual frame rate can keep up with the de-
manded frame rate. 

Although I’ve just said that these bandwidth indicators are not essential, the reason they were 
added is very important.  If you look way back at Fig. 3.1, you will see that there is one wire-
less communication channel between your robot and your laptop.  That means that the basic 
control of your robot, in the form of data packets sent from the Driver Station, is fighting for 
bandwidth with the stream of images your Dashboard is demanding from the camera.  Don’t 
make this a fight that robot control is likely to lose.  You can control the image size, the 
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amount of image compression, and the camera frame rate.  Experiment some with your test 
target setup, and use the smallest image you feel gives you reasonable image processing.  
You can probably do a perfectly nice job working with 320 by 240 images.  The default 
compression value of 30 seems to be a reasonable compromise, but you can adjust it as you 
see fit.  Finally, ask yourself if you really need to acquire 30 frames per second.  At 10 
frames per second, you will be acquiring an image every 100 ms.  That may be fast enough.  
If you need to, you can adjust any of these parameters “on the fly”.  Maybe you have a “low 
res” mode for cruising around and a “hi res” mode for shooting?  It’s up to you.  You’ve 
earned that Image Processing Zen Master merit badge, haven’t you? 

In the middle of the case structure, you can see that the image is processed through IMAQ 
Clear Overlay.  Since the image has no overlay, this  does nothing but provide an easy way to 
detect whether there is an error associated with the image.  If there is, the Image Error Mes-
sage indicator is made visible, and the resulting error message will be displayed on top of 
your image.  Also in here is a nifty little VI that will save an image to your laptop hard disk 
once every second.  The saved images can be found in “MyDocuments/LabVIEW Data”. The 
routine only keeps the most recent 60 images so that you don’t fill the hard drive.  If you are 
having problems with your image processing and targeting, these saved images could provide 
you with an extremely useful diagnostic.  You would probably want to add some code so the 
VI was only called during times that you were actually interested in the results.  Or, you 
could make your own code (using this VI as a reference) that saves images using a naming 
scheme of your choice at times of your choosing.   

Since I have mentioned image processing, I should point out that this loop is the obvious 
place to do it.  You can send the results of the processing down to the robot from here.  There 
is no need to somehow get the value into Loop 1. 

Loop 3:  Autobound Variables 

The default dashboard has two the tab controls, the front tab of the right hand control, high-
lighted in Fig. 8.9 is the Operations tab, and it is special.  Any control or indicator you put 
onto the front panel inside this tab is automatically put into the network table using its actual 
name as the storage name.  This saves you half of the work, but you still have to implement 
Fig. 8.2 or 8.3 in your robot code to read or write the value.  And it only works for stuff you 
put here, in the Operations tab.  It’s something of a neat trick, but the lack of flexibility is a 
big price to pay to save a rather small amount of work.  (If you look in the default Teleop VI, 
you can see the code used to read the checkboxes and slider on the default Dashboard.) 

 

FIGURE 8.9 The Operations tab on the default Dashboard. 
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Loop 3 (Fig. 8.10) does the work of gathering up the controller and indicator names on the 
operations tab and putting them into the table, and also of continually monitoring the values 
and keeping everything up to date.  (All the heavy lifting is hiding inside the “Bind” routine.)  
If you decide to do away with the Operations tab (or even the entire tab control), you can de-
lete this loop.  If you do so, you should also delete the notifier wiring as discussed in the sec-
tion on Loop 1. 

 

FIGURE 8.10 Loop 3, which sends data to and from the indicators and con-
trols in the Operations tab. 

Loop 4:  The Network Table Tree 

Fig. 8.11 shows the loop that updates a tree indicator on the Variables tab (left hand side of 
the Dashboard, behind the camera image).  This tree shows updated values for all the varia-
bles in your network table, both the ones on the Operations tab, and the ones you’ve coded 
entirely yourself. It also shows how much bandwidth is being used by the network table.  
Possibly useful when debugging.  Probably useless in a competition.  From a functional point 
of view, there is no problem with deleting this loop and the Variables tab as well. 

 
FIGURE 8.11 Loop 4, which updates the Variable tab and lets you see all 
the data you are passing to and from the robot in one place. 

Loop 5:  Kinect Data and Display 

Here is where I confess that I have never programmed the Kinect.  If you plan to use the Kinect, 
Loop 5 is where its data gets read.  If you don’t plan to use the Kinect, this loop can go. 



123 

 

 
FIGURE 8.12 Loop 5, the Kinect. 

Loop 7:  Window Size and Position  

Probably you notice that I skipped Loop 6.  The reason for that will become apparent shortly.  
Loop 7 (Fig. 8.13) controls the size and position of the Dashboard window.  Unless you have 
a very old laptop, it’s screen is much bigger than the default Dashboard size.  It would be a 
shame to waste all that real estate, which you could be using for bigger, more informative 
displays.  If you modify the code to match Fig. 8.14, then your Dashboard will fill your lap-
top screen.  Part of the front panel will be unusable because it’s behind the Driver Station, 
but still, it’s an improvement. 

 

FIGURE 8.13 Loop 7. 

 

FIGURE 8.14 Modification to make a full screen Dashboard. 

Loop 6:  A Whole Lotta Stuff 

There is so much going on in Loop 6 that it difficult to know where to begin.  Let’s try start-
ing with the 30,000 foot view:  Loop 6 is all about handling the user interface to the Dash-
board.  Let’s face it:  during a competition match, you absolutely will not be using a mouse to 
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click around the controls on the dashboard.  So if all you have in mind is building a Dash-
board for competition, you can just go ahead and delete this loop and all the code at the bot-
tom of the diagram that feeds it.   

On the other hand, there’s some great stuff in here that will teach you a lot of LabVIEW if 
you have the patience to work through it.  You might also find much of it useful in the build-
ing and debugging phase, and could adopt some or all of it for a custom debugging dash-
board of your own.  Or you could just use the default Dashboard as it is, and not worry about 
any of this.  This last option is probably the least useful, as you won’t be able to use all the 
features of the default Dashboard unless you learn something about how it works. 

The Event Structure 

Fig. 8.15 shows our first look at Loop 6 (we will need to take a lot of looks at this loop…).  
You can see that inside the While Loop is a rectangular structure with diagonally striped bor-
der.  This is an Event Structure.  It is a very close cousin to the Case Structure, with which 
you are already very familiar.  A Case Structure has multiple frames, and a particular frame 
is selected by the data that is wired to the selector terminal.  An Event Structure also has mul-
tiple frames, but no selector.  Instead, an individual frame is selected for execution by things 
that happen, or “events.”  Possible events are the user clicking on a control, or the value of a 
variable changing, for example (the actual number of different events to choose from is quite 
large).  The event that corresponds to the frame is shown in the bar at the top.  Just as in a 
Case Structure, you can click the little down arrow to get a list of all the events in the struc-
ture.  You will see, for example, “Camera Settings”: Value Change, which indicates the par-
ticular frame that will execute of the value of the variable Camera Settings changes.   

As you can see, there are 13 separate events, most of which are related to the (new in 2013) 
Test Mode.  We will continue to take a high level view here:  we’ll look at what is going on 
in the structure and explain how to use it, but not go through everything in detail.  Actually 
figuring out how this code works will be a good exercise in self-directed learning.  

 

FIGURE 8.15 The Timeout event in Loop 6. 
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Event 0:  Timeout 

Timeout is the event that happens when no other events are happening.  It happens every 
60 ms, since that is the interval wired to the timeout terminal in the upper left corner of the 
structure.  If the robot is not in Test mode, then this event doesn’t do much. 

Events 6 and 7:  Camera Settings 

As already discussed, the default Dashboard has indicators that show you the frame rate and 
bandwidth usage for your camera.  You change them through a nifty little pop-up control.  
These two frames manage that control, and—as a bonus—save your settings to disk when 
you are done.  On Windows 7, the saved settings are written to the text file “Public Docu-
ments\FRC\DashboardSettings.ini” (the Windows XP equivalent is somewhere under “Doc-
uments and Settings”).  When the Dashboard first starts up, this file is read, and the camera 
settings are read from this file and applied to the camera, using code that is below and to the 
left of Loop 6 in the diagram.  For competition, you might not want to allow the accidental 
changing of the camera settings via the Dashboard.  In that case, you could hard-wire the set-
tings you want, as in Fig. 7.5, having first used the default Dashboard to figure out what they 
are. 

Events 4 and 5:  The Checklist 

If you’ve been involved in competitions already, you probably know that it’s a good idea to 
have a pre-match checklist to help you remember all the critical items (freshly charged bat-
tery?  drive train tight?  drive station switches for autonomous match your start position?).  
The right hand tab control on the Dashboard has a checklist feature.  The list is stored in the 
text file “Public Documents\FRC\Checklist.ini”.   Simply edit this file to replace the example 
list with your own items.  The example list also explains how to check individual items and 
how to clear all the check marks at once.  There is also an un-documented method that allows 
you to un-check (or check) an individual item in the list.  See if you can figure out what it is 
from the code. 

Test Mode (Events 0, 1, 2, 3, 8, 9, 10, 11, 12, and 13) 

In 2013 a new mode, Test, was added to the FRC robot framework.  The idea behind this 
mode is to provide you with quick way to verify the operation of your robot.  You can do this 
either by directly reading and controlling robot components, or by writing specific tests of 
your own design.  For example, you could create a test that runs the left drive motor at 75% 
power for half a second, and then does the same for the right drive motor.  Or your test could 
close and then open a gripper. 

Test mode works like Autonomous:  it is an independent VI that is called by reference (as 
you can observe in Fig. 4.1).  You launch this VI by pressing the Test mode on the Drive Sta-
tion’s Operations tab (see Fig. 4.20). Like Autonomous, Test mode runs inside a While Loop 
(there are actually two in parallel, as we’ll see) that keeps it running, since it is not driven by 
the main Robot Framework state machine.     

We’ll start with the do-it-yourself style of tests.  The default Dashboard comes with an ex-
ample of this kind of test which is a good place to start because it uses no hardware.  You can 
run it on your cRIO without anything robot-like attached. 
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Switch the Dashboard to the Test tab.  If your “robot” (which could be no more than a cRIO 
for now) is in Test mode, you will see a tree full of information (which you can ignore for the 
moment).  If you are not in test mode, there will be an informative message.  Down below 
this tree of data is a drop-down menu (Fig. 8.16a).  Press that and a drop down list of all your 
pre-programmed tests.  If you are just running the default code, then the list will look like 
Fig. 8. 16b, since the only available test is the provided example.  Select that test and it will 
run immediately, giving you a progress bar, as in Fig. 8. 16c. 

To see what is going on and to understand how to create more meaningful tests, look at the 
code that is running the example, shown in Fig. 8.17.  Inside the While Loop is a case struc-
ture.  When you make a selection from the drop-down list on the Dashboard, you are select-
ing one of the cases in this structure.  Your complete test code has to be contained in a single  

      

 (a)  (b)  (c) 

FIGURE 8.16 Running a programmed test. 

case and has to run to completion in one shot, as this is not a state machine (although you can 
get around this and turn it into a state machine.  See below).  The code in Example Test does 
nothing but update the progress bar (Fig. 8. 16c).  The For Loop executes 20 times, causing 
the numbers 0, 5, 10… to be written in sequence to the network table variable named “Test-
Mode/TestProgress”.  The Dashboard reads this value from the table and updates the pro-
gress bar.  At the same time, a sequence of strings is created, “Step 0”, “Step 1”, etc. and 
written to the network table variable “TestMode/TestProgressText”.  The Dashboard reads 
this text variable and writes that text as an overlay on top of the progress bar.  (If you are in-
terested, the Dashboard is using the Timeout Event (Event 0) of Loop 6 to do this updating.) 

 

FIGURE 8.17 The code for the example test. 
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Note that when the For Loop completes, an empty text string is written to the network table 
string variable named “TestMode/TestName”.  This is very important.  When your test com-
pletes, the next iteration of the For Loop will select whatever test name is sitting in “Test-
Mode/TestName”.  If you forgot to update this variable, then your test name will still be 
there, and the Test program will go into an infinite loop.  (I would have written this code dif-
ferently:  I would have put that network table VI outside the case structure.  Then, when you 
add a new case for a new test, you automatically get an incompletely wired tunnel and a bro-
ken arrow, which would force you to remember that you have to wire something to control 
the program flow.) 

Note that you are not required to use an empty string here.  You could create a 
test that used multiple cases in the main case structure.  The first case in your 
test could put the name of the second case in there, and so on, causing the pro-
gram to work through the steps of your test in sequence.  You just need to make 
sure that the last case writes that empty string. 

Just so you have an example of a test that does something, Fig. 8.18 shows a new test (creat-
ed by duplicating the Example Test case) that actuates a solenoid, first one way, and then the 
other.  You can see that I’ve modified the flow control for the entire Test VI in the way I 
suggested.  As written, the (imagined) gripper will close, the progress bar will update.  When 
it reaches 100% and the test is over, the gripper will open.  You could easily figure out how 
to write code that will open the gripper when the progress bar reaches 50%, if that suits you 
better. 

 

FIGURE 8.18 Another example. 

Of course, you can’t run your test if it doesn’t show up in that drop-down list on the Dash-
board.  To make that happen, look at the diagram for Test.vi, above the main loop.  Put your 
test names in this string array (Fig. 8.19) and they will appear on the Dashboard list so you 
can run them. 
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FIGURE 8.19 The list of tests.  One test per line. 

Finally, we return to that tree of data that takes up most of the Test tab.  Test mode includes a 
secondary loop, which I’m sure you have noticed by now, that runs a VI labeled “Auto Pub-
lish”.  This VI searches through all the devices you registered in Begin.vi, reads their value 
(if they are a sensor or a joystick) and assembles the results (along with some other bits of 
information) into a tree display.  In Test mode, you can mess with  your joystick controls and 
watch the values change before your eyes.  (Hint: to read values that extend beyond the tree 
display window, hover the mouse over the values and keep it moving while you test the joy-
stick).  You could also test that a limit switch is working by (safely‼) reaching into the robot 
an operating the switch.  The corresponding digital input in the tree should change value if 
the switch is working. 

 

FIGURE 8.20 Test mode being used to operate the left front motor in a four 
motor drive system. 

You can also control your actuator outputs from this tree.  Things that you can control in this 
fashion show up with a “**” after them.  So, for example, you can operate a motor, as in 
Fig. 8.20 by clicking on the output line.  A slider and a button magically appear.  Set the slid-
er to the value you want, and press the button.  The motor will run at that power as long as 
the button is pressed.  If you chose a different actuator (solenoid, digital output, servo motor), 
you will be presented with a suitable control on the Dashboard to allow you to operate it in 
an appropriate fashion.  Note that while you gave a single name to your drive system in 
Begin.vi, the motors appear here as separate items so you can test them one at a timet.  (If 
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you really want a driving test, you could code that yourself as one of your programmed tests, 
but be careful‼)  You can even use this tree to mess up the camera parameters you carefully 
set while optimizing your image capture and processing… 

Dashboard Strategies 

If all you want is a competition Dashboard that shows you key information, you need only 
Loops 1 and 2 out of the original seven.  If you are not doing any image processing, you 
don’t even need Loop 2 (although that would be sad).  On the other hand, Test mode could be 
really handy in the pit…  What to do?   

The Dashboard has introduced you to the Tab Control, something we’ve not paid any atten-
tion to because it’s a user interface feature, and before the Dashboard, we had no user inter-
face to program.  But as you can see, it is a convenient way to stack different front panel in-
terfaces on top of each other, allowing them to share the same piece of screen real estate. 
Hmmm… 

Building Your Dashboard 

You can run your Dashboard by pressing the white arrow, provided you’ve stopped the de-
fault Dashboard that pops up when you start the Driver Station.  But what you’d really like to 
do is have your Dashboard pop up and launch automatically when the Driver Station starts.  
The default Dashboard is an executable file located (along with a couple of related files) in 
the folder “C:\Program Files\FRC Dashboard”.  Make a sub-folder in there called “Original” 
or something equally original, and drag the executable and the other files in there.  That saves 
the default so that you can drag it back out if you are having trouble with yours and you real-
ly need something that works now, now, now!  

 
FIGURE 8.21 Changing the default directory for Dashboard.exe. 

Now go to the Dashboard Project Tree, expand “Build Specifications”, right-click on “FRC 
PC Dashboard”, and select properties.  Select “Destinations” in the left hand column and you 
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will get the view shown in Fig. 8.21.  Change the Destination Path for Dashboard.exe to 
“C:\Program Files\FRC Dashboard”.  Then click on “Support Directory” and make that di-
rectory the same as for Dashboard.exe.  Click the OK button and save the project file.  Now, 
you can right-click “FRC PC Dashboard” and select Build, and an executable file will be cre-
ated and automatically launched with your Driver Station. 

That’s it.  Go bring home a blue banner! 
 

 

 

 

 

 

 

 

 


