
WPILib Mecanum Control Algorithm Comparison
Jon C. Anderson
25 January 2011

The 2011 WPILib Mecanum Control Algorithm differs from the 2010 version in that the speed output in
the cardinal directions are maximized and the speed output is normalized over all four motors when it
exceeds 100% for any given motor to ensure the relationship between translation and rotation instead of
having the SpeedController.Set method clip a motor command in excess of 100%.

2010 Mecanum Control Algorithm
The 2010 Mecanum Control Algorithm is implemented in RobotDrive::HolonomicDrive. The
algorithm is implemented as an omni-wheel based holonomic control defined as:

MotorOutputn=Velocity×sinHeading−MotorOffsetn−Rotation
SpeedControllern . Set MotorOutputn

where Velocity is the commanded robot velocity percentage (aka magnitude), Heading is the
commanded robot heading (aka direction), MotorOffsetn is the angle of the particular wheel with
respect to a Heading of 0 degrees, and Rotation is the yaw-rate scalar value.

Since Mecanum wheels are best placed at 90 degrees from each other around the robot for optimal
performance and simplicity of control, the algorithm is implemented as follows:

/*--*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*--*/

void RobotDrive::HolonomicDrive(float magnitude, float direction, float rotation)
{

float frontLeftSpeed, rearLeftSpeed, frontRightSpeed, rearRightSpeed;
magnitude = Limit(magnitude);
float cosD = cos((float)(direction + 45.0) * 3.14159 / 180.0);
float sinD = cos((float)(direction - 45.0) * 3.14159 / 180.0);
frontLeftSpeed = Limit((float)(sinD * (float)magnitude + rotation));
rearLeftSpeed = Limit((float)(cosD * (float)magnitude + rotation));
frontRightSpeed = Limit((float)(cosD * (float)magnitude - rotation));
rearRightSpeed = Limit((float)(sinD * (float)magnitude - rotation));

m_frontLeftMotor->Set(frontLeftSpeed * m_invertedMotors[kFrontLeftMotor]);
m_frontRightMotor->Set(frontRightSpeed * m_invertedMotors[kFrontRightMotor]);
m_rearLeftMotor->Set(rearLeftSpeed * m_invertedMotors[kRearLeftMotor]);
m_rearRightMotor->Set(rearRightSpeed * m_invertedMotors[kRearRightMotor]);

}

© Jon C. Anderson except where noted 1

By applying the Forward Kinematic Analysis and solution presented in Ether's Kinematic Analysis of
Four-Wheeled Mecanum Vehicle white paper a Mecanum robot's total Velocity, Heading, and Rotation
can be calculated. To generate a full range of of Velocity and Heading values a set of simulated joystick
inputs are used with no limiting or modification. The Velocity and Heading with no Rotation being
applied can be visualized as:

Note that limiting the Velocity to 1.00 limits the robot's total speed to 2 /2 or approximately 0.71.

© Jon C. Anderson except where noted 2

Illustration 1: 2010 Mecanum Control Algorithm Robot Speed vs. Velocity
and Heading with No Rotation Applied

-1.00
-0.50

0.00
0.50

1.00
-1.00

-0.50

0.00

0.50

1.00

0.00
0.06
0.13
0.19
0.25
0.31
0.38
0.44
0.50
0.56
0.63
0.69
0.75
0.81
0.88
0.94
1.00

R
ob

ot
 S

pe
ed

Joystick.x

Joystick.y

When applying a Rotation of 0.29, Velocity and Heading can be visualized as:

Note that the clipping applied by limiting the MotorOutput to the 100% of which it is capable begins to
distort the robot's speed at the maximum everywhere except the cardinal directions as well as the shape
of the cone which starts to become dented in along the cardinal directions as the relationship between
the robot's x-axis component, y-axis component, and yaw-rate component can no longer be maintained.
This results in a robot that is no longer strictly holonomic as the control of each of the robot's degrees of
freedom are no longer independent of each other.

© Jon C. Anderson except where noted 3

Illustration 2: 2010 Mecanum Control Algorithm Robot Speed vs. Velocity
and Heading with a Rotation of 0.29

-1.00
-0.50

0.00
0.50

1.00
-1.00

-0.50

0.00

0.50

1.00

0.00
0.06
0.13
0.19
0.25
0.31
0.38
0.44
0.50
0.56
0.63
0.69
0.75
0.81
0.88
0.94
1.00

R
ob

ot
 S

pe
ed

Joystick.x

Joystick.y

The point at which clipping occurs is at a Velocity where the maximum motor output exceeds
1−Rotation which occurs at a Velocity of 0.71 for a Rotation of 0.29 as seen in Illustration 3:

2011 Mecanum Control Algorithm
The 2011 Mecanum Control Algorithm is implemented in RobotDrive::MecanumDrive_Polar.
The algorithm modifies the algorithm seen in 2010 so that the Velocity results in a maximum
MotorOutput of 1.00 when the Heading is in the cardinal directions and normalizes the vector of
MotorOutputs to maintain the relationship between each of the MotorOutputs and therefore Velocity,
Heading, and Rotation. The algorithm is now defined as:

MotorOutputn=Velocity×2×sinHeading−MotorOffset n−Rotation
Normalize MotorOutput1 ,⋯,MotorOutput n
SpeedControllern . Set MotorOutputn

where the Normalize function produces a normal vector if any of the vector components exceed a value
of 1.00.

© Jon C. Anderson except where noted 4

Illustration 3: 2010 Mecanum Algorithm Non-Clipping Limit

0.00

0.25

0.50

0.75

1.00

Vehicle.total
Vehicle.ω

The new algorithm is implemented as follows:
/*--*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*--*/

void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, float rotation)
{

// Normalized for full power along the Cartesian axes.
magnitude = Limit(magnitude) * sqrt(2.0);
// The rollers are at 45 degree angles.
double dirInRad = (direction + 45.0) * 3.14159 / 180.0;
double cosD = cos(dirInRad);
double sinD = sin(dirInRad);

double wheelSpeeds[kMaxNumberOfMotors];
wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation;
wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation;
wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation;
wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation;

Normalize(wheelSpeeds);

UINT8 syncGroup = 0x80;

m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] *
m_invertedMotors[kFrontLeftMotor] * m_maxOutput, syncGroup);

m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] *
m_invertedMotors[kFrontRightMotor] * m_maxOutput, syncGroup);

m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] *
m_invertedMotors[kRearLeftMotor] * m_maxOutput, syncGroup);

m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] *
m_invertedMotors[kRearRightMotor] * m_maxOutput, syncGroup);

CANJaguar::UpdateSyncGroup(syncGroup);

m_safetyHelper->Feed();
}

© Jon C. Anderson except where noted 5

By again applying the Forward Kinematic Analysis and solution presented in Ether's Kinematic Analysis
of Four-Wheeled Mecanum Vehicle white paper the Velocity and Heading with no Rotation being
applied can be visualized as:

Note that limiting the Velocity to 1.00 with this algorithm allows for a robot total speed of 1.00 in the
cardinal directions and 2 /2 or approximately 0.71 in the diagonals instead of limiting the maximum
total speed to 2 /2 in all directions. The cone is also wider when compared to the previous algorithm
which is a result of the robot speed maintaining linearity from stopped to full speed.

© Jon C. Anderson except where noted 6

Illustration 4: 2011 Mecanum Control Algorithm Robot Speed vs. Velocity
and Heading with no Rotation applied

-1.00
-0.50

0.00
0.50

1.00
-1.00

-0.50

0.00

0.50

1.00

0.00
0.06
0.13
0.19
0.25
0.31
0.38
0.44
0.50
0.56
0.63
0.69
0.75
0.81
0.88
0.94
1.00

R
ob

ot
 S

pe
ed

Joystick.x

Joystick.y

When applying the same Rotation of 0.29 for this algorithm, Velocity and Heading can be visualized as:

Note that the shape of the curve has not been changed with the application of Rotation but is scaled
down equally. Along the cardinal directions the relatively higher robot speed of the algorithm is
maintained in comparison to the previous algorithm. Along the diagonals the maximum robot speed is
reduced to the same levels as the clipping produced in the previous algorithm.

It is also interesting to note that with a Velocity of 0.50 the 2011 Mecanum Control Algorithm has the
same robot speed output as the 2010 Mecanum Control Algorithm has at a Velocity of 2 /2 as seen
below because the only difference under this point in the curve for each is the scalar of 2 /2 :

© Jon C. Anderson except where noted 7

Illustration 5: 2011 Mecanum Control Algorithm Robot Speed vs. Velocity
and Heading with a Rotation of 0.29

-1.00
-0.50

0.00
0.50

1.00
-1.00

-0.50

0.00

0.50

1.00

0.00
0.06
0.13
0.19
0.25
0.31
0.38
0.44
0.50
0.56
0.63
0.69
0.75
0.81
0.88
0.94
1.00

R
ob

ot
 S

pe
ed

Joystick.x

Joystick.y

Conclusion
There are obviously many benefits of the 2011 Mecanum Control Algorithm over the 2010 version
including: maximizing the speed of the robot where possible; maintaining as much independence
between the x-axis velocity, y-axis velocity, and yaw-rate; and a quicker reaction of robot to joystick
command due to the slope of speed curve. There are also a few benefits of the 2010 Mecanum Control
Algorithm over the 2011 version including: higher precision speed control as the slope of the speed
curve is softer and more larger area of linear response to joystick commands. The benefits of each are a
result of the scaling and normalization applied in the 2011 version.

As the goal of any robot control system is to make the robot controllable by the driver the final call for
how the robot reacts to joystick commands lies with the drivers. If the driver's style is to always peg the
sticks at the physical stops when driving regardless of the necessity of speed, then a linear response to
joystick commands is more desirable so the robot always reacts as expected. If the driver's style is small
precise movements and being conscious using only the necessary speed, a higher precision response to
joystick commands is more desirable to all for the finest control available. While these would typically
be cases for using the 2010 version of the algorithm they are not.

The tradeoff that gives precision and a larger area of linear response is against maximum speed. This is
achieved by the scalar multiplier in the 2011 version of the algorithm which is hard coded to 2 /2
and not the vector normalization. If the multiplier is tweaked to give the driver the response they need
(or preferably the joystick inputs are scaled or filtered before being applied) the 2011 version can give
the same response to translation commands as the 2010 version. The normalization in the 2011 version
is an upgrade from the clipping that occurs in the 2010 version as it can better maintain the relationship
between each of the wheel speeds and therefore maintain holonomic control.

© Jon C. Anderson except where noted 8

Illustration 6: 2011 Mecanum Control Algorithm
Robot Speed vs. Heading with a Velocity of 0.50
and a Rotation of 0.29

0.0000

0.2500

0.5000

0.7500

1.0000

Vehicle.total
Vehicle.ω

Illustration 7: 2010 Mecanum Control Algorithm
Robot Speed vs. Heading with a Velocity of 0.71
with a Rotation of 0.29

0.00

0.25

0.50

0.75

1.00

Vehicle.total
Vehicle.ω

	WPILib Mecanum Control Algorithm Comparison
	2010 Mecanum Control Algorithm
	2011 Mecanum Control Algorithm
	Conclusion

