Building a
Pulse Width Modulation (PWM)
Signal Generator

William Bretton
Ben Bretton

Triple Helix, the Menchville High School Robotics Team
FIRST Robotics Competition Team 2363

NEED

As most FRC teams understand, time is critical during the build season. We have seen
many instances where a prototype mechanism needed to be tested before any software
was written. Often, the mechanism needed to be tested by controlling one or two
motors through their full operating range from 100% in the forward direction to 100% in
the reverse. There were also several other use cases where the ability to manually drive
a motor or servo was needed:

Controlling drive train motor(s) to ensure proper operation
Controlling shooter mechanisms for tuning RPMs and testing different shooter
wheels

e Controlling arm-like mechanisms requiring slow and precise movement
Bench-checking motors

REQUIREMENTS

We used the following requirements to design and implement our solution:

1. The device must be able to generate a Pulse Width Modulation signal compatible
with common FRC motor controllers such as the Talon SRX.

2. The device must be able to generate a Pulse Width Modulation signal compatible
with common servos.

3. The device must be battery powered and rechargeable using standard micro USB
cable.

4. The device must be able to function using micro USB connection when battery is
low.

5. The device must be portable enough to keep in a toolbox.

6. The device must allow for fine control throughout the motor controller’s range.

7. The device must provide visual feedback of the duty cycle output from -100% to
+100%.

8. The device must create a PWM signal between 1000 and 2000 microseconds.

PAYOFFS/BENEFITS

Building a DIY PWM driver also offered a great opportunity for the electrical team to
gain a little more experience in designing a functional solution, sourcing quality
components, programming a microcontroller, and some human-machine interface
development experience.

PARTS LIST

Note: Prices shown are date of document creation.

ltem Description Vendorand | Cost
part #

Adafruit $9.95

Pro Trinket 5V 16MHz
2000

inket Sy

Trin

Adafruit $19.50

Monochrome 0.96"” 128x64
326

OLED graphic display

Adafruit $4.95

Lilon/LiPoly Backpack Add-On
2124

for Pro trinket

Adafruit $0.50

Potentiometer knob - Blue
2048

Adafruit $0.95

Panel mount 1k potentiometer
1789

Lithium lon Battery 3.7v
2000mAh

Adafruit | $12.50
2011

Clear Case, Hammond
1591ATCL or similar

. e
P 9
r: N |
&
i et o,
P s == =y
& =y
&
N ———

Digi-Key | $6.46
HM957-ND

CIRCUIT DIAGRAM

AL € UvYWwoooL +
1-090-2¢09.3
024/ 05093

Pla M t Vin
@ 200008y @

WXy gepy R
adafruit!

Xerttote ok X

— -

To PWM connector

fritzing

4

LiPoly/Lilon Backpack

The LiPoly/Lilon Backpack allows charging of the battery while the Pro Trinket is
connected to 5V USB. When the battery is charged, unplugging the USB power from the
Pro Trinket will automatically switch over to the battery.

The small Backpack board is designed to be mounted directly on top of a Pro Trinket if
desired, so the BAT, G, and 5V pins connect to the corresponding BAT, G, and 5V pins on
the Pro Trinket. An On/Off switch is connected to the 2 pins labelled “Pwr Switch”, and
a LiPo battery is plugged into the LiPoly Backpack.

The default charging rate of 100 mA is for batteries less than 500mAh, so if you're using
a 500 mAh or larger battery, you can short the indicated pads on the back of the board
by soldering. This puts the charging board into 500mA mode. See the Adafruit page for
more details. (https://learn.adafruit.com/adafruit-pro-trinket-lipoly-slash-liion-backpack)

+ E603450 7B20
E7B02-D60-1
+ 1000mAh 3.7V

-
.....

FTDI Header

fritzing

https://learn.adafruit.com/adafruit-pro-trinket-lipoly-slash-liion-backpack

Monochrome OLED Display
A 0.96" 128x64 OLED display is used for the user interface. To wire the OLED to the Pro
Trinket using Serial Peripheral Interface (SPI):

OLED Pin Pro Trinket Pin

GND GND

Vin 5V
DATA 9

CLK 10

D/C 11

RST 13

CS 12

Demo programs are available for this OLED display from Adafruit, so it can be tested
with the Pro Trinket before running the PWM Driver code.

Note: Using this display requires that the Adafruit SSD1306 and Adafruit GFX libraries
are installed into your Arduino IDE. See the Adafruit site for details.
(https://learn.adafruit.com/monochrome-oled-breakouts)

D :a N 3 v
@ 800000 @

fritzing

https://learn.adafruit.com/monochrome-oled-breakouts

Potentiometer

Any basic potentiometer can be used. It is connected to the Pro Trinket by the
potentiometer center pin (wiper) connected to analog input pin AO. The power and
ground pins are connected to 5v and GND on the Pro Trinket.

BUS G BAT

3 pur
I

.

p = |

Pro
oTrinket!—
=< &

AS ()

o GND 5V RX TX o2 =

M XXX X X IF
FTDI Header

fritzing

PWM Cable
A PWM cable is connected to the Pro Trinket 5v, GND, and pin 3. This cable can be

connected to any compatible motor controller or servo. Y-cables can also be used if you
wish to drive 2 motor controllers at once.

To PWM connector

o Trinket!—

® @, N lso A
vo [t

1k

4 HHz3

.Aiﬁ.ﬂ‘.

@Ay | Rx(@

@45 @

w GND_ SV RX TX £ =

e eee® e
FTDI Header

fritzing

OPERATION

Starting the PWM driver with the potentiometer knob fully counter-clockwise allows it to
act as a Servo driver and provide the required signals that Servos expect. Starting the
PWM driver with the knob vertical puts the device into Motor mode so that it can output
a PWM signal used by motor controllers. Each of the two modes uses a slightly
different display.

During operation using a motor controller, the raw potentiometer value is shown along
with the percentage -100 to 100 and the PWM value of 1000 to 2000 (ms) for motors
and from 0 to 180 for servos when using the Servo library. This value represents the
duty cycle length in microseconds. Thus, 1000 is 100% reverse while 2000 is 100% in
the forward direction. Stopping the motor at 0% input will show 1500 as a PWM value.

While displaying only the percentage (-100% to 100%) would have been sufficient, the
potentiometer value and PWM values are shown so the user can see details of the
potentiometer state and the values sent to the controller or servo.

Use of a PWM Y-cable can be used if more than one motor controller is to be tested. If
motors are needed to operate in opposing directions, a simple crossover cable can
made using Anderson Powerpoles that inverts the red/black wires connected to motors.
This is extremely helpful when testing dual-motor shooters as well as both sides of
drive train.

CODE

This is the program used for our device. It's not perfect, nor is it intended to be. Feel
free to modify it for your own use. Other displays can easily be used in place of the
OLED.

/***

PWM Driver - A utility program that generates a PWM signal for the
purpose of sending test inputs to a motor controller or servo.

W. Bretton Jan 2016

***/

#include <SPI.h>

#include <Wire.h>

#include <Servo.h>

#include <Adafruit GFX.h>
#include <Adafruit SSD1306.h>

// These connections are for using SPI:

#define OLED MOSI 9

#define OLED CLK 10

#define OLED DC 11

#define OLED_CS 12

#define OLED RESET 13

Adafruit SsSD1306 display(OLED MOSI, OLED CLK, OLED DC, OLED RESET, OLED CS);

// Device will generate a signal that is capable of driving either a servo or a motor
controller.

#define SERVO MODE 1

#define PWM MODE 0

int op_mode = PWM MODE;
int cnt = 0;
int potValue;

int servoValue;
int motorSpeed;
int pwmValue;

int outPin = 3;

Servo myDevice;

/* Uncomment this block to use hardware SPI

#define OLED_DC 6

#define OLED CS 7

#define OLED RESET 8

Adafruit SSD1306 display(OLED DC, OLED RESET, OLED CS);
*/

#1f (SSD1306 LCDHEIGHT != 64)

#error ("Height incorrect, please fix Adafruit SSD1306.h!"™);
#endif

void setup () {
myDevice.attach (outPin) ;

display.begin (SSD1306 SWITCHCAPVCC) ;

// Initialize OLED and print a welcome. Change this as required.
display.clearDisplay();

display.setTextSize (3);

display.setTextColor (WHITE) ;

display.setCursor (0,0);

display.println ("Triple");

display.setCursor (0,32);

display.println("Helix!");

display.display();

delay (3000) ;

// Get the initial potentiometer value. If it's nearly fully counter-clockwise,
// use this as a SERVO driver. Otherwise, assume motor controller.
potValue = analogRead (AO0) ;
if (potValue < 100)
op_mode = SERVO MODE;
} //setup

// Main

void loop () {
// get the raw pot value and do quick a few quick conversions
potValue = analogRead (AO0) ;
// for display only, show the direction and speed as %
motorSpeed = map (potValue, 0, 1023, -100, 100);

// PWMs want to see a duty cycle between 1000 and 2000
pwmValue = map (potValue, 0, 1023, 1000, 2000);

// servos want to see 0 - 180
servoValue = map (potValue, 0, 1023, 0, 180);

if (op _mode == SERVO MODE) ({

//put out value for a servo
myDevice.write (servoValue) ;
displayTextd ("Pot Value",

String (potValue),

"Servo",

" " + String(servoValue)) ;
delay(15);

else {

//output the value that the motor controller wants to see
myDevice.writeMicroseconds (pwmValue) ;
displayTextd ("Pot Value",

String (potValue),

"Motor/PWM",

String (motorSpeed)+ "/" + String(pwmValue)) ;

} // main loop

// Used to make the display output easier to format and use the 4 lines
void displayTextd4 (String linl, String 1lin2, String 1in3, String 1lind) {

display.clearDisplay();

display.setTextSize (2);

display.setTextColor (WHITE) ;

//display.setTextColor (BLACK, WHITE) ;

display.setCursor(12,0);

display.println(linl);

display.setCursor (42,16);
display.println(lin2) ;

//display.setTextColor (BLACK, WHITE)
display.setCursor(12,32);
display.println(lin3);

display.setCursor (6,48);
display.println(lind4) ;

display.display();
} //displayText4d

Note: While the writeMicroseconds () method would have worked fine when using either a
motor controller or a servo, I chose to use the Servo.write (servoValue) method when
driving a servo thinking that a 1-180 value would be easier to understand than sending
1000-1500 to a servo. This simply reflects a preference and can be changed if desired.

11

SETUP

A sample setup is shown below. A typical FRC battery can be used and connected to a
motor controller with a FRC main breaker inline. The PWM driver is connected to the
PWM port on the motor controller and the controller is wired to any motor that is to be
tested.

We routinely connected two motor controllers to the 12V power source when needing to
test 2 motors. A crossover power connector was used on one motor when two motors
were to be driven in opposite directions.

185120F
120 AMPERE
THERMAL CIRCUIT BREAKER

Sample setup using a main breaker connected between a battery and a Talon motor controller. PWM
Driver is connected to the Talon.

12

NEXT STEPS
Our team is planning for the next version of the PWM driver to have the following

modifications:

e Breaker, 2 motor controllers, display, potentiometer(s) and various switches

integrated into a single project box
e Toggle switches to provide inputs for two outputs
o One potentiometer controls both motor controllers (same direction)

o One potentiometer controls both motor controllers (opposing direction)
o Two potentiometers control two motor controllers

Rather than having the PWM driver provide PWM cable outputs that require a separate
setup of breaker, motor controllers, etc., the next version will be an integrated device
that will use a 6 AWG Anderson connector to a battery and two Powerpole outputs to

connect to two or more motors.

13

