

potential-engine: A simple RTSP
server for FIRST Robotics Competition
h.264 video streaming and resulting bandwidth reduction in FRC

Introduction 2

Video Encoding 2
Software setup 2

Install and Setup Raspbian 2
Install Dependencies 3

Raspberry Pi Camera Source 4
Stream away! 4

RTSP 4
RTP 5

Video Decoding 6
Using non-FIRST Software 6

GStreamer 6
RTSP 6
RTP 7

FFmpeg 7
RTSP 7
RTP 7

Extending FIRST-provided Software 7
SmartDashboard 7

Network Measurements 8
Raspberry Pi Camera v2 8

Notes 9
Comparison: Limelight v1 MJPEG 9

Notes 9

Troubleshooting 9
RTSP 9

The stream is shown as starting on port -1 10
The server says any IPv6 address is invalid and uses 0.0.0.0 instead 10

RTP 10
Image suffers from gray blobs/decoding errors 10

Common 10
Unusually high latency 10

TCP 10
Video encoding and decoding 10

v4l2src internal data stream error 11
GStreamer complains about missing OpenMAX elements 11

1

Introduction
Video streaming has been a major component of having a competition viable robot for

several years. In prior years (e.g. 2017 and 2016) large obstacles have obstructed parts of the
field, and for a significant portion of the match this year driver vision is completely obstructed
by the SANDSTORM.

The default (and, at time of writing, only) video codec supported by WPILib’s camera
server is the Motion JPEG (MJPEG) format. MJPEG does work, and arguably has advantages for
FRC. Encoding each frame independently reduces latency, but comes at a bandwidth cost. This
is particularly stinging with the bandwidth cut for 2019 (from 7Mb/s per team to 4Mb/s per
team.) Formats such as MPEG (note the lack of J) and h.264 can be more than two times more
effective in terms of compression ratio. With hardware-accelerated encoding being available for
USD$35 in the form of a Raspberry Pi, the computational difficulty of encoding h.264 video
becomes a largely moot point. This document will outline how we have implemented h.264
video encoding on a Raspberry Pi, driver station video decoding, and network usage/latency
measurements.

Video Encoding
The Raspberry Pi 3B has the capability to do hardware-accelerated video encoding out of the
box, with no extra hardware required. However, the default Raspbian Lite image does not
contain the required software to take advantage of this. (Other images might, but running a X
server on a system that is largely “set and forget” is not the greatest idea due to additional
resource consumption.)

Software setup

Install and Setup Raspbian
Teams that already know how to set up a Pi with Raspbian Lite, skip to "Install Dependencies."

Starting with the obvious, find a good microSD card that doesn’t have anything important on it.
All data on this card will be lost. The Raspberry Pi Foundation has an excellent guide
(https://www.raspberrypi.org/documentation/installation/installing-images/README.md)on
installing a particular image, but to sum up:

1. Download the Raspbian Lite image from the Raspberry Pi Foundation. It’s not required to
extract the zip file. Be careful not to choose “Download Torrent”.

2. Install Etcher. Etcher is a fantastic tool for writing disk images in general, keep it handy.
3. Connect/insert the SD card.
4. Flash!

a. Open Etcher

2

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

b. Click “Select image” and select the zip file from step one.
c. Click “Select drive” and find the drive in the list. If it doesn’t appear, make sure the

SD card is connected. Etcher should protect you from overwriting your hard drive,
but be careful anyway.

d. Hit “Flash!” There will likely be a prompt for some form of password or
authorization. This will take a while.

After burning the card, insert it into the Pi. Connect a keyboard and monitor - the CLI does not
understand mice or other rodents. Power on with a good USB power supply. Most Micro USB
phone chargers are up to the task. To connect to a VRM, use a 5V/2A channel. After a little
waiting, a login prompt should appear. The default username is pi, with the password
raspberry.

There are a few settings to change sooner rather than later. Run sudo raspi-config at the
command prompt, and do the following:

● If black bars surround the screen, disable overscan compensation (Advanced Options ->
Overscan)

● Enable SSH for remote (“headless”) access later (Interfacing Options -> SSH.) You will
want this when the Pi is mounted to a robot and difficult to remove and connect to a
keyboard and monitor.

● Change your keyboard layout to match the keyboard you’re using (Localisation Options
-> Change keyboard layout)

● Expand the filesystem to use the whole card (this may happen automatically on first
boot. Advanced Options -> Expand Filesystem)

Hit the right arrow key twice to select “Finish”, hit Enter, and reboot.

Install Dependencies
Before the streaming and encoding software is installed, it’s a good idea to update and upgrade
Raspbian. Connect the Pi to the Internet and run the following command to update and upgrade
all at once:

sudo apt update && sudo apt upgrade

When prompted if you wish to continue by apt, hit enter (or Y, then enter.) You’re now ready to
install a long list of dependencies:

n.b.: you may not need the good, the bad, and the ugly all installed,

depending on your camera of choice

sudo apt install git cmake gstreamer1.0-omx-rpi gstreamer1.0-tools

gstreamer1.0-plugins-good gstreamer1.0-plugins-bad

gstreamer1.0-plugins-ugly libgstreamer1.0-dev

That is a mouthful of a command, but it’s not necessary to install all those packages in one go -
they can be done one at a time (sudo apt install git; sudo apt install cmake, etc.)

3

Raspberry Pi Camera Source
Teams using the Raspberry Pi Camera module will need to install a dependency from source
code. Luckily, the process has been made as simple as possible and only takes five commands:

install required dependencies from apt

sudo apt install autoconf automake libtool pkg-config libgstreamer1.0-dev

libgstreamer-plugins-base1.0-dev libraspberrypi-dev

fetch the source code

git clone "https://github.com/thaytan/gst-rpicamsrc.git" && cd
gst-rpicamsrc

build and install

./autogen.sh --prefix=/usr --libdir=/usr/lib/arm-linux-gnueabihf/

make

sudo make install

Make sure the module installed OK:

this should output a detailed explanation of the rpicamsrc element

gst-inspect-1.0 rpicamsrc

Stream away!

RTSP
We’ve created a simple streaming server for RTSP streaming. It supports the Raspberry Pi
Camera Module, as well as any webcam available with Video4Linux (provided that the V4L
driver provides YUY2 raw color.) The GPL’d source code is on GitHub
(https://github.com/BHSSFRC/potential-engine), and pull requests are welcome!
RTSP requires some additional dependencies:

apt packages

sudo apt install libgstrtspserver-1.0-dev gstreamer1.0-rtsp

fmt library

sadly the Raspbian version of this package is out of date

cd # go home
git clone "https://github.com/fmtlib/fmt.git" # download {fmt} source
cd fmt && mkdir build && cd build # create build files directory
cmake .. # create build files
sudo make install # build and install {fmt}

After installing dependencies, download and build the streaming server:

cd && git clone "https://github.com/BHSSFRC/potential-engine.git"
cd potential-engine && mkdir build && cd build

4

https://github.com/BHSSFRC/potential-engine

cmake ..

make

The program is controlled with a large number of run-time switches.
● --rpi_cam: Use the Raspberry Pi camera module. Requires the Raspberry Pi GStreamer

source to be available (see: "Raspberry Pi Camera Source")
● --no_rpi_cam: Don’t use the Raspberry Pi camera module. Default option.
● --hardware_accel: Use OpenMAX hardware acceleration. Does not have any effect if

rpi_cam is set (the Raspberry Pi Camera Module does hardware encoding
automatically.)

● --height (or -h): Sets video height. When using a Raspberry Pi Camera Module, the
value must be 360, 480, or 720. Otherwise, use v4l2-ctl --list-formats-ext to get a
list of available framerate/resolution combinations. Setting this is the simplest way to
reduce your bandwidth use. Defaults to 480.

● --fps (or -f): Sets video frames per second (FPS.) Use v4l2-ctl
--list-formats-ext to get a list of available framerate/resolution combinations for
non-Raspberry Pi cameras. Defaults to 30.

● --url (or -u): Sets the stream URL. Defaults to /stream. Examples (assume the Pi is at
10.34.94.66):

○ ./potential-engine -u /foobar -h ...

■ The stream is available at rtsp://10.34.94.66:1181/foobar
○ ./potential-engine --url i_like_ponies -h ...

■ The stream is available at rtsp://10.34.94.66:1181/i_like_ponies
● --port (or -p): Sets the stream port. Must be an integer. Defaults to 1181 (since this

port should be open even when behind the Field Management System.) Please note that
by default Linux restricts binding to ports below 1024 to the root user.

RTP
RTP streaming doesn’t require any more dependencies, and saves a small amount of
bandwidth, but it does have a few small catches to its use. Most stream viewers will require a
Session Description Protocol (SDP) file to be somehow transferred to the client prior to
streaming. This file is consistent as long as the address of the client and the video encoding
settings remain the same. Additionally, the “server” must know the address of the client before
it will be able to start streaming.

To stream h.264 video from a webcam connected to a Raspberry Pi, run the following
command:

ffmpeg -f v4l2 -video_size 640x360 -framerate 10 -pixel_format yuyv422 -i

/dev/video0 -vcodec h264_omx -f rtp rtp://DR.I.V.ER:2222 -sdp_file

stream.sdp

5

This command will generate an SDP file in the current directory on the Raspberry Pi. Most video
players will need this file to read the stream.

To stream from the Raspberry Pi Camera Module, use the following:

gst-launch-1.0 rpicamsrc !

"video/x-h264,height=640,width=360,framerate=30/1" ! h264parse ! rtph264pay
! udpsink host=DR.I.V.ER port=2222

Note that this does not create an SDP file automatically. Stack Overflow has an example file
(https://stackoverflow.com/a/13234988/3551604):

v=0

m=video 2222 RTP/AVP 96

c=IN IP4 DR.I.V.ER

a=rtpmap:96 H264/90000

This file leaves a lot of settings to be “guessed” by your decoder, and it’s best to either find a
way to make it consistent (so the SDP file can be stored on the client prior to the stream) or to
use a streaming protocol that avoids the issue entirely (such as RTSP.)

Video Decoding
Unfortunately, no FIRST-provided software is capable of decoding h.264 streams (over any
protocol.) The options are currently:

● Use new (i.e. non-FIRST) software to display video.
● Extend FIRST-provided software to enable h.264 encoding

As of 2019-04-16, both solutions are legal for competition play. FIRST’s only restriction on
OPERATOR CONSOLE software is that the National Instruments Driver Station is used to
command the robot to change modes, send joystick input to the robot, etc.

Using non-FIRST Software

GStreamer
GStreamer (https://gstreamer.freedesktop.org/) can be controlled with a simple, easy-to-read
pipeline syntax and handles RTP streams without SDP files. It’s also highly extensible (in stark
contrast to FFmpeg requiring recompiling to add a single codec.) However, documentation
ranges from sparse to arcane to simply nonexistent, official or not.

RTSP
On Linux, make sure you have gstreamer1.0-libav (or your distribution's equivalent) installed.
On Windows, ensure that “GStreamer 1.0 libav wrapper” is selected to be installed during
installation. On both platforms, run the following command to view the stream:

6

https://stackoverflow.com/a/13234988/3551604
https://gstreamer.freedesktop.org/

gst-launch-1.0 rtspsrc location="rtsp://SE.R.V.ER:8554/stream_url"
latency=0 ! rtph264depay ! avdec_h264 ! autovideosink sync=false

To use TCP instead of UDP, add protocols=tcp before the first exclamation mark (!).

RTP
RTP is nearly identical to RTSP for GStreamer.

gst-launch-1.0 -v udpsrc port=2222 ! "application/x-rtp" ! rtph264depay !
avdec_h264 ! videoconvert ! autovideosink sync=false

FFmpeg
FFmpeg (https://ffmpeg.org/) is known for being the software for video conversion. It’s older
than GStreamer (by about a month), and has extensive documentation - either in the form of man
pages or online. Enough codecs are bundled into it to do nearly any job, however, adding more
requires re compiling from the ground up. It will also form the basis for extending
FIRST-provided software later.

RTSP

ffplay -fflags nobuffer "rtsp://SE.R.V.ER:8554/stream_url"

To use TCP instead of UDP, add -rtsp_transport tcp.

Note that ffplay has a small internal buffer to ensure smooth playback. This has a nasty
tendency to introduce artificial latency, so using GStreamer will probably provide better results.
An alternative command using ffmpeg alone would be ffmpeg -i
rtsp://SE.R.V.ER:1181/stream -f sdl -. This has no internal buffering.

RTP

ffplay -fflags nobuffer -protocol_whitelist file,crypto,rtp,udp

stream_file.sdp

Pretty simple. The only complication is actually getting the SDP file in the first place. RTP still
suffers from internal buffering.

Extending FIRST-provided Software

SmartDashboard
Due to changes in Java 11, plugin support is currently disabled in the SmartDashboard as of
2019-03-25. This means that to extend the program, we have to fork SmartDashboard and add
new elements directly to the source. Luckily, we can modify the existing MjpgStreamViewer

7

https://ffmpeg.org/

class to suit other codecs. (In fact, by using FFmpeg, we can support a large number of codecs
at once.) Our version of this modification is, again, hosted on GitHub,
(https://github.com/BHSSFRC/SmartDashboard) with pull requests welcome. To roughly
describe the process:

1. Add JavaCV (https://github.com/bytedeco/javacv) to build.gradle:
1.1. In the dependencies block, add the line compile group: 'org.bytedeco',

name: 'javacv-platform', version: '1.4.3'

2. Create your new element
2.1. This class will essentially copy MjpegStreamViewer. The main difference is that

instead of using an InputStream to fetch frames, we will make use of a
FFmpegFrameGrabber to grab frames and a Java2DFrameConverter to convert
the video frames to BufferedImage instances.

A reference for this can be found at https://git.io/fh6G6. Some modifications that you might
want to consider:

● Any options that can be passed to ffplay can be passed to a FFmpegFrameGrabber via
setOption(name, value).

● Generalizing the shared code between MjpegStreamViewer and your new class into a
unified stream viewer class to derive subclasses for particular formats from.

Network Measurements
All measurements are the peak values found for no less than one minute of streaming.
Bandwidth use was measured with Wireshark (https://www.wireshark.org/) with a one second
interval in formal testing. We used GStreamer to view the stream, since it seemed to have the
least latency.

Raspberry Pi Camera v2

FPS Resolution Transport

Peak
bandwidth
(Mbps, still
image)

Peak
bandwidth
(Mbps,
driving)

Rough
Latency (ms)

Networking
HW

30 426x240 UDP 1.052 100 Robot

30 640x360 TCP 2.2488 Robot

30 640x360 TCP 2.2752 #N/A Building

30 640x360 UDP 1.8176 #N/A Building

30 640x480 TCP 2.348 #N/A Building

30 640x480 UDP 2.7616 #N/A Building

8

https://github.com/BHSSFRC/SmartDashboard
https://github.com/bytedeco/javacv
https://git.io/fh6G6
https://www.wireshark.org/

Notes
Significant image errors occur when using UDP on the robot networking hardware as of
2019-02-16. This is probably due to the radio allowing more out-of-order packets than the
hardware used in other tests.
We could not sucessfully stream 720p over the stock FRC radio with either TCP or UDP.

Comparison: Limelight v1 MJPEG

FPS Resolution Transport

Peak
bandwidth
(Mbps, still
image)

Peak
bandwidth
(Mbps,
driving) Latency (ms) Mode

22 320x240 TCP 1.1096
Computer
vision

22 320x240 TCP 3 Driver video

Notes
The Limelight is a fantastic vision system. The fact that it evidently consumes more bandwidth
to stream video should by no means discourage its use (rather, aim to optimize what you can to
avoid it becoming a problem.)
We measured this using a “vision processing” pipeline for the first test, and a “driver” pipeline for
the second test. “Driving” pipelines (i.e. higher exposure) will use significantly more bandwidth.
In informal testing, we saw these pipelines run as high as 3 Mbps (leaving only 1 Mbps for all
other robot comms!)

Troubleshooting

RTSP
If you’re having issues with potential-engine, please file an issue on GitHub and we’ll do what
we can to fix it. (If you have a solution to an issue, write a pull request!)
Some common issues we had are below.

The stream is shown as starting on port -1
Linux doesn’t let non-root users bind to ports < 1024. Either run the program as root with sudo
or use a higher port. Also, make sure the port you’ve specified is not already bound and the
server “owns” the specified address.

9

The server says any IPv6 address is invalid and uses 0.0.0.0 instead
This is a known issue with potential-engine as of 2019-04-16. This may be fixed in the future,
but is low priority since IPv6 is relatively uncommon in the context of FRC.

RTP

Image suffers from gray blobs/decoding errors
You are probably losing packets to UDP. This is the nature of RTP - see “Why Does RTP use UDP
instead of TCP?” (https://stackoverflow.com/q/361943/3551604) Try using RTSP with TCP
transport instead.

Common

Unusually high latency
Various factors can add latency to the camera stream.

TCP
TCP is a double edged sword. On the one hand , you will almost always get every single packet
delivered. However, if any packets drop, the latency introduced by retransmission will “pile up”
over time. If this becomes a significant problem, consider using UDP or lowering your stream
quality.

Video encoding and decoding
Software encoding takes eons compared to hardware encoding. Using the hardware encoder
available on a Raspberry Pi will drastically reduce stream latency for minimal effort.

Alternatively, your client (driver station) may be too underpowered to decode the stream in a
reasonable amount of time. Consider using a more powerful computer or look into
hardware-accelerated decoding options available for your hardware. (Most likely these will not
be OpenMAX, as the OpenMAX project is primarily concerned with “low power and embedded
system devices”.) DirectX Video Acceleration
(https://en.wikipedia.org/wiki/DirectX_Video_Acceleration) may be a good starting point for
Windows devices, and is available in FFmpeg.

v4l2src internal data stream error
Verify that the following are true:

● GStreamer is as up-to-date as your distribution packaging goes. (Even Debian Stable has
a version recent enough.)

10

https://stackoverflow.com/q/361943/3551604
https://en.wikipedia.org/wiki/DirectX_Video_Acceleration

○ Make sure you didn’t accidentally install GStreamer 0.10. Debian stil packages
this, and it’s easy to slip up when tab-completing long commands.

● You are not pressing the camera to do more than it can provide (for instance, if a camera
supports 480p60fps and 720p30fps it will probably not take kindly to 720p60fps.)

● Only potential-engine is accessing the camera. potential-engine can serve
multiple clients, but other processes running on the same machine (such as those
present on WPILib’s FRCVision image) can lock a camera before potential-engine
can use it.

GStreamer complains about missing OpenMAX elements
● Did you install both gstreamer1.0-omx-rpi and gstreamer1.0-omx?
● Does gst-inspect-1.0 omxh264enc print No such element or plugin

‘omxh264enc’? Does gst-inspect-1.0 -b | grep omx print anything?
○ If you answered yes to both questions on the line above, the OpenMAX plugins

are blacklisted for some reason. Thankfully, this is easily fixed. Use dpkg-query
-L gstreamer1.0-omx-rpi to list all files installed by gstreamer1.0-omx-rpi.
One of these should be named libgstomx-rpi.so. Unblacklist it with
gst-inspect-1.0 /path/to/libgstomx-rpi.so and the elements should be
usable.

11

