
Mike Anderson
(manderson13@cox.net)

and

Greg Smith
(gnsmith@cox.net)

Herndon High School

FRC Team #116

C++ Programming

For 2010-2011 FRC Teams

FRC C++-Introduction-2 - FRC Team #116

What We’ll Talk About

 Goals

 Why C/C++?

 The development environment

 Talking to the cRIO

 Making it move

 Resources

 Summary

FRC C++-Introduction-3 - FRC Team #116

Goals

 The goal of this presentation is to help you

understand how to use C/C++ in the

development of your robot

 We clearly can’t explain all of the aspects

because we only have 75 minutes

 But, you should leave here with a better

understanding of the process

FRC C++-Introduction-4 - FRC Team #116

Why C/C++?

 C/C++ is a standard in embedded systems
programming for over 30 years
It’s still the most predominant language in the embedded,

real-time operating system (RTOS) world
• This gives your team valuable real-world experience

 It’s compiled to native machine code
No virtual machine interpreters

• No pausing due to garbage collection

It’s fast

 It’s the native language of the VxWorks RTOS
The environment is written in C and Assembler

You get easy, direct access to the underlying O/S

 C++ is object oriented
Full support from WPILib

FRC C++-Introduction-5 - FRC Team #116

Why Not C/C++?

 C/C++ is compiled
This adds complexity to the build

 C/C++ is textual
There are no cutesy GUIs with lots of obscure

symbols and squiggly lines

 There is no hand-holding VM to catch your
mistakes
The syntax is similar to Java, but it’s definitely not

Java

 C/C++ has pointers
Objects can be referenced in many different ways

This concept can be too much for some developers

FRC C++-Introduction-6 - FRC Team #116

Getting Your cRIO Ready

 Before you can start

development, you’ll

need to make sure that

your cRIO has the

proper operating

system image on it

This is accomplished

using the cRIO imaging

tool

FRC C++-Introduction-7 - FRC Team #116

The Development Environment

 The FIRST provided platform is the Wind

River Systems Workbench tool

IDE is based on the open-source Eclipse tool

The compiler is the open-source GNU compiler

• But, the front-end is licensed and requires a key

– Provided by FIRST

 The compiler is actually a cross-compiler

We are building on an x86 for a PowerPC

• Again, this is a standard approach for commercial,

embedded development

FRC C++-Introduction-8 - FRC Team #116

Development Environment #2

 Workbench runs under Windows and Linux

FIRST only supplies the Windows installation

 Workbench runs under Windows XP, Vista or

Windows 7 (2011 season)

You can also run it in a virtual machine

• For all you Mac OS/X and Linux fans

When you install it, there will be a key file that

needs to be placed in c:\windriver\license

FRC C++-Introduction-9 - FRC Team #116

The WRS Workbench

FRC C++-Introduction-10 - FRC Team #116

Creating A Project

 Workbench collects all of the files related to

building a piece of code into a subdirectory

called a project folder

It’s normally stored under the

c:\windriver\workspace directory

• You can put the project elsewhere when you open the

workbench tool

 You can also import and export projects

This allows you to create a .zip of the project for

archival purposes

FRC C++-Introduction-11 - FRC Team #116

New Project -- Simple Robot

FRC C++-Introduction-12 - FRC Team #116

New Project Result

FRC C++-Introduction-13 - FRC Team #116

Build the Project

FRC C++-Introduction-14 - FRC Team #116

Attach to the Target

 Before you can load code to the robot, you

need to create a target connection

This will also create a “target server” and

“registry” instance

 It is possible to have multiple users attached

to the same target

Not recommended if you’re both running robot

code though ;-)

FRC C++-Introduction-15 - FRC Team #116

Attach to the Target #2

FRC C++-Introduction-16 - FRC Team #116

Attached Target

 Once the robot is attached to the target server,

you’ll see all of the tasks running on the target

in the “Remote Systems” window

 If you create your own threads, they’ll show up

in the list as well

FRC C++-Introduction-17 - FRC Team #116

Running Code

 In order to run your robot code, you’ll need to have the target

attached

You’ll need to create a “run config”

FRC C++-Introduction-18 - FRC Team #116

Handling Unloading

 Workbench has the option to automatically

unload previously loaded code and replace it

with the new code

Not the default behavior though

 There are a series of changes that need to be

made to the run configuration to support

automatic unloading

FRC C++-Introduction-19 - FRC Team #116

Unload Settings

Highlight and select “Edit”

to get the next screen…

FRC C++-Introduction-20 - FRC Team #116

Unload Settings #2

Change this setting to auto unload

FRC C++-Introduction-21 - FRC Team #116

Running Code on the Robot

 Once your code is loaded, the entry point
(FRC_UserProgram_StartupLibraryInit) will

be called and your code will start running

Make sure that your Classmate is attached and

you should be able to control the robot

 There is an option to disable the “STOP”

button on the UI

Use with caution…

 You can then test Autonomous or Teleop code

segments

FRC C++-Introduction-22 - FRC Team #116

Disabling the Stop Button

Click the LED and you’ll get

a dialog that allows you to

disable the STOP button

FRC C++-Introduction-23 - FRC Team #116

Debugging Code

 In order to debug code, you’ll need to create a debug launcher

 Check the debug option for automatically connect to spawned

tasks

FRC C++-Introduction-24 - FRC Team #116

Attaching to Threads

 In order to debug your iterative robot, you

need to make sure you automatically attach to

spawned tasks

Otherwise you won’t be able to debug the

autonomous/teleop code

 In the debug launcher configuration, set the

auto attach feature in the debug configuration:

FRC C++-Introduction-25 - FRC Team #116

Debugging Code #2

 Once debugging as started, Workbench will

automatically switch to the debug perspective:

FRC C++-Introduction-26 - FRC Team #116

Debugging Code #3

 By default, the code will stop at the public

constructor entry-point

 You can right-click in the code view “gutter” to

toggle a breakpoint

Then tell the system to step or continue

 This is using the GDB debugger under the

covers

If you understand GDB, you’re in familiar territory

• If not, we’ll show you some examples during the demo

FRC C++-Introduction-27 - FRC Team #116

Deploying Code on the Robot

 Once you code is working, you can deploy the

code to the robot

Only one program can be resident at a time

 Once the code is downloaded, you can reboot

the robot and your code will run!

You can also do this with Filezilla (it’s just FTP)

FRC C++-Introduction-28 - FRC Team #116

Some Hints

 The environment for C++ can be a bit tricky to
deal with at first

Especially if you want to use CAN bus

 For CAN bus, you need to use a Black Jaguar
and disable the standard console output on the
cRIO (or use the 2CAN Ethernet bridge)

For the Black Jaguar, you need exclusive access to
the serial port

Look on Chief Delphi for write-ups on CAN use

FRC C++-Introduction-29 - FRC Team #116

Some Hints #2

 To make the serial console available while still
being able to monitor the cRIO console, load the
network console application to the target and run
the network console application on your host

All of the console I/O of the cRIO comes across the
network now into a new window

 We’ll give you a link to the network console
application in the links

FRC C++-Introduction-30 - FRC Team #116

The Network Console

 Useful as an option to using the RS-232 port

on the cRIO

FRC C++-Introduction-31 - FRC Team #116

Resources

 Chief Delphi
http://www.chiefdelphi.com

 FIRST forums
http://forums.usfirst.org

 NI Community Forums
http://ni.com/FIRST

 WPI / FIRST NSF Community site (ThinkTank)

 These sites are monitored members of:
WPI
NI
FIRST

 All source code available for team-team
assistance

 Phone support through NI
866-511-6285 (1PM-7PM CST, M-F) ?

FRC C++-Introduction-32 - FRC Team #116

Important Links

 WPILib updates and documentation
 http://first.wpi.edu/FRC/frccupdates.html
 http://first.wpi.edu/Images/CMS/First/WPI_Robotics_Library_Users_Guide.pdf
 http://first.wpi.edu/Images/CMS/First/WPILibSource20100107.zip
 http://first.wpi.edu/Images/CMS/First/CProgrammingReference.chm

• doxygen - old

 Net console
 http://first.wpi.edu/Images/CMS/First/NetConsoleClient_1.0.0.4.zip

 FIRST software resource page
 http://www.usfirst.org/roboticsprograms/frc/content.aspx?id=1093

FRC C++-Introduction-33 - FRC Team #116

Summary

 C/C++ can be very challenging to new
developers

C/C++ is similar enough to Java that Java
developers can adapt to it quickly

• However, pointers will require some explaining

 The rewards include:

Faster operation of the robot

Fine-grain control of the robot’s behavior

The ability to leverage native VxWorks™ facilities

Training in techniques that will enable most of the
“green” technology of the future

