
Mike Anderson
(manderson13@cox.net)

and

Greg Smith
(gnsmith@cox.net)

Herndon High School

FRC Team #116

C++ Programming

For 2010-2011 FRC Teams

FRC C++-Introduction-2 - FRC Team #116

What We’ll Talk About

 Goals

 Why C/C++?

 The development environment

 Talking to the cRIO

 Making it move

 Resources

 Summary

FRC C++-Introduction-3 - FRC Team #116

Goals

 The goal of this presentation is to help you

understand how to use C/C++ in the

development of your robot

 We clearly can’t explain all of the aspects

because we only have 75 minutes

 But, you should leave here with a better

understanding of the process

FRC C++-Introduction-4 - FRC Team #116

Why C/C++?

 C/C++ is a standard in embedded systems
programming for over 30 years
It’s still the most predominant language in the embedded,

real-time operating system (RTOS) world
• This gives your team valuable real-world experience

 It’s compiled to native machine code
No virtual machine interpreters

• No pausing due to garbage collection

It’s fast

 It’s the native language of the VxWorks RTOS
The environment is written in C and Assembler

You get easy, direct access to the underlying O/S

 C++ is object oriented
Full support from WPILib

FRC C++-Introduction-5 - FRC Team #116

Why Not C/C++?

 C/C++ is compiled
This adds complexity to the build

 C/C++ is textual
There are no cutesy GUIs with lots of obscure

symbols and squiggly lines 

 There is no hand-holding VM to catch your
mistakes
The syntax is similar to Java, but it’s definitely not

Java

 C/C++ has pointers
Objects can be referenced in many different ways

This concept can be too much for some developers

FRC C++-Introduction-6 - FRC Team #116

Getting Your cRIO Ready

 Before you can start

development, you’ll

need to make sure that

your cRIO has the

proper operating

system image on it

This is accomplished

using the cRIO imaging

tool

FRC C++-Introduction-7 - FRC Team #116

The Development Environment

 The FIRST provided platform is the Wind

River Systems Workbench tool

IDE is based on the open-source Eclipse tool

The compiler is the open-source GNU compiler

• But, the front-end is licensed and requires a key

– Provided by FIRST

 The compiler is actually a cross-compiler

We are building on an x86 for a PowerPC

• Again, this is a standard approach for commercial,

embedded development

FRC C++-Introduction-8 - FRC Team #116

Development Environment #2

 Workbench runs under Windows and Linux

FIRST only supplies the Windows installation

 Workbench runs under Windows XP, Vista or

Windows 7 (2011 season)

You can also run it in a virtual machine

• For all you Mac OS/X and Linux fans

When you install it, there will be a key file that

needs to be placed in c:\windriver\license

FRC C++-Introduction-9 - FRC Team #116

The WRS Workbench

FRC C++-Introduction-10 - FRC Team #116

Creating A Project

 Workbench collects all of the files related to

building a piece of code into a subdirectory

called a project folder

It’s normally stored under the

c:\windriver\workspace directory

• You can put the project elsewhere when you open the

workbench tool

 You can also import and export projects

This allows you to create a .zip of the project for

archival purposes

FRC C++-Introduction-11 - FRC Team #116

New Project -- Simple Robot

FRC C++-Introduction-12 - FRC Team #116

New Project Result

FRC C++-Introduction-13 - FRC Team #116

Build the Project

FRC C++-Introduction-14 - FRC Team #116

Attach to the Target

 Before you can load code to the robot, you

need to create a target connection

This will also create a “target server” and

“registry” instance

 It is possible to have multiple users attached

to the same target

Not recommended if you’re both running robot

code though ;-)

FRC C++-Introduction-15 - FRC Team #116

Attach to the Target #2

FRC C++-Introduction-16 - FRC Team #116

Attached Target

 Once the robot is attached to the target server,

you’ll see all of the tasks running on the target

in the “Remote Systems” window

 If you create your own threads, they’ll show up

in the list as well

FRC C++-Introduction-17 - FRC Team #116

Running Code

 In order to run your robot code, you’ll need to have the target

attached

You’ll need to create a “run config”

FRC C++-Introduction-18 - FRC Team #116

Handling Unloading

 Workbench has the option to automatically

unload previously loaded code and replace it

with the new code

Not the default behavior though

 There are a series of changes that need to be

made to the run configuration to support

automatic unloading

FRC C++-Introduction-19 - FRC Team #116

Unload Settings

Highlight and select “Edit”

to get the next screen…

FRC C++-Introduction-20 - FRC Team #116

Unload Settings #2

Change this setting to auto unload

FRC C++-Introduction-21 - FRC Team #116

Running Code on the Robot

 Once your code is loaded, the entry point
(FRC_UserProgram_StartupLibraryInit) will

be called and your code will start running

Make sure that your Classmate is attached and

you should be able to control the robot

 There is an option to disable the “STOP”

button on the UI

Use with caution…

 You can then test Autonomous or Teleop code

segments

FRC C++-Introduction-22 - FRC Team #116

Disabling the Stop Button

Click the LED and you’ll get

a dialog that allows you to

disable the STOP button

FRC C++-Introduction-23 - FRC Team #116

Debugging Code

 In order to debug code, you’ll need to create a debug launcher

 Check the debug option for automatically connect to spawned

tasks

FRC C++-Introduction-24 - FRC Team #116

Attaching to Threads

 In order to debug your iterative robot, you

need to make sure you automatically attach to

spawned tasks

Otherwise you won’t be able to debug the

autonomous/teleop code

 In the debug launcher configuration, set the

auto attach feature in the debug configuration:

FRC C++-Introduction-25 - FRC Team #116

Debugging Code #2

 Once debugging as started, Workbench will

automatically switch to the debug perspective:

FRC C++-Introduction-26 - FRC Team #116

Debugging Code #3

 By default, the code will stop at the public

constructor entry-point

 You can right-click in the code view “gutter” to

toggle a breakpoint

Then tell the system to step or continue

 This is using the GDB debugger under the

covers

If you understand GDB, you’re in familiar territory

• If not, we’ll show you some examples during the demo

FRC C++-Introduction-27 - FRC Team #116

Deploying Code on the Robot

 Once you code is working, you can deploy the

code to the robot

Only one program can be resident at a time

 Once the code is downloaded, you can reboot

the robot and your code will run!

You can also do this with Filezilla (it’s just FTP )

FRC C++-Introduction-28 - FRC Team #116

Some Hints

 The environment for C++ can be a bit tricky to
deal with at first

Especially if you want to use CAN bus

 For CAN bus, you need to use a Black Jaguar
and disable the standard console output on the
cRIO (or use the 2CAN Ethernet bridge)

For the Black Jaguar, you need exclusive access to
the serial port

Look on Chief Delphi for write-ups on CAN use

FRC C++-Introduction-29 - FRC Team #116

Some Hints #2

 To make the serial console available while still
being able to monitor the cRIO console, load the
network console application to the target and run
the network console application on your host

All of the console I/O of the cRIO comes across the
network now into a new window

 We’ll give you a link to the network console
application in the links

FRC C++-Introduction-30 - FRC Team #116

The Network Console

 Useful as an option to using the RS-232 port

on the cRIO

FRC C++-Introduction-31 - FRC Team #116

Resources

 Chief Delphi
http://www.chiefdelphi.com

 FIRST forums
http://forums.usfirst.org

 NI Community Forums
http://ni.com/FIRST

 WPI / FIRST NSF Community site (ThinkTank)

 These sites are monitored members of:
WPI
NI
FIRST

 All source code available for team-team
assistance

 Phone support through NI
866-511-6285 (1PM-7PM CST, M-F) ?

FRC C++-Introduction-32 - FRC Team #116

Important Links

 WPILib updates and documentation
 http://first.wpi.edu/FRC/frccupdates.html
 http://first.wpi.edu/Images/CMS/First/WPI_Robotics_Library_Users_Guide.pdf
 http://first.wpi.edu/Images/CMS/First/WPILibSource20100107.zip
 http://first.wpi.edu/Images/CMS/First/CProgrammingReference.chm

• doxygen - old

 Net console
 http://first.wpi.edu/Images/CMS/First/NetConsoleClient_1.0.0.4.zip

 FIRST software resource page
 http://www.usfirst.org/roboticsprograms/frc/content.aspx?id=1093

FRC C++-Introduction-33 - FRC Team #116

Summary

 C/C++ can be very challenging to new
developers

C/C++ is similar enough to Java that Java
developers can adapt to it quickly

• However, pointers will require some explaining

 The rewards include:

Faster operation of the robot

Fine-grain control of the robot’s behavior

The ability to leverage native VxWorks™ facilities

Training in techniques that will enable most of the
“green” technology of the future

