
FRC Team 3128 Software Framework Summary v0.2.2

Noah Sutton-Smolin

September 30, 2013

Contents
1 Introduction 2

1.1 Why use an Event-driven system? . 2

2 Core program structure 3
2.1 Code execution . 3
2.2 Package structure . 4

3 What are Events, and how do I use them effectively? 4
3.1 Small blocks of code . 4
3.2 Drive events . 5
3.3 Controller events . 5
3.4 Sequencing events in autonomous . 6

4 Hardware interface classes 6
4.1 Motor encoders . 7
4.2 Motor speed controllers . 7
4.3 MotorLink . 7
4.4 Pneumatics . 8

5 Other utilities 8

6 Conclusion 8

1

1 Introduction
Welcome to the FRC Team 3128’s software framework! We are making this available for public use by
any FIRST team (attribution requested), as we have fleshed out the details and are decently pleased
with the results. May it help you on your further quests.

This framework is designed to simplify the conceptualization and execution of robotic code, specifi-
cally designed for the FIRST Robotics Competition API. It is an event-driven system; this means that
the robot is controlled solely by Events. An Event is simply a block of code which runs at a set interval.

This document assumes confident Java and Object Oriented Programming knowledge, including
abstract classes and their implementations. It also assumes you have some familiarity with the FRC
API. Additionally, you may wish to check out our code from Google Code (titled “frc-team-3128”). You
must be using the latest FRC Java API. These things will not be explained over the course of the
document, as this is neither a Java nor Netbeans nor FRC API introduction; rather, it is an FRC 3128
framework introduction. Additionally, the entire program has javadoc, so all functions are explained in
themselves.

If you would like an FRC API and NetBeans setup guide, one is available in our repository; it is
titled “Programming Intro.pdf”.

While this code architecture does take some getting used to, it has increased our speed by over a
factor of 100, our software accuracy, and testing speed. We hope it does the same for you. As the only
setup is done during initialization, it also allows for dynamic and easy testing; again, we hope it does
the same for you. Here’s a short list detailing some capacity of this architecture:

• Sequence together tasks during autonomous in a seamless way, which would otherwise be difficult
to attain

• Control the entire drive train during teleop

• Dynamically add and remove buttons and their effects

• Allow dynamic decision-making trees and heuristic algorithms

Should you find any errors, questions, concerns, bugs, questions, etc., please email Noah Sutton-
Smolin at noahsutsmo@gmail.com. If so, we apologize for the inconvenience, and will be more than happy
to update and/or fix. We will also be happy to help answer questions about how to use this API. If there
are any features you would like to see, please send me an email as well!

You may also create an issue for feature requests or bugs on our project’s homepage:

https://code.google.com/p/frc-team-3128/

1.1 Why use an Event-driven system?
Event systems are particularly useful in robotic applications, as they enable responsive behavior which
remains decentralized. Many other styles involve writing specifically what you want to do in an exact
order. The Event-driven system, however, allows you to dynamically change the order and timings of
events with ease. In addition, it allows for several tasks which would otherwise be inordinately difficult:
the creation of autonomous programs (through the use of EventSequencer), the creation of events which
run after a certain amount of time, and high efficiency increases.

One of the primary benefits belongs with controllers (called “Joysticks” in the FRC API; we will
call them “controllers” for the duration of this document). Controllers are also Events; however, in-
stead of controlling the drive train directly, they call events through the ListenerManager utility. The
ListenerManager allows certain events to be run when the triggers are called.

Here’s an example:

ListenerManager.addListener(new Event () {
public void execute () {Global.motorSpin.setPower (0.7);}

}, "buttonADown");

In this statement, we’ve done two things: we’ve first created a new Event. That event simply contains
code in its execute() function which spins up a motor. We’ve then registered it with the ListenerManager
under the listener "buttonADown". Now, if the listener "buttonADown" is called elsewhere in the code, all
associated Events will be run. This is as simple as:

2

ListenerManager.callListener("buttonADown");

In this case, when the user presses the A button, the Controller event will register the change and call
the appropriate listener, "buttonADown". The ListenerManager then looks for any events which should
run (are linked with the key), and executes them.

2 Core program structure
This section will detail where the code you write actually goes, then will detail the actual package struc-
ture for the program.

The first thing to cover is the DebugLog, as it prettifies all of the debug outputs. It makes everything
organized and neat in your outputs. It does this by enforcing three things:

1. Log message severity, which can be filtered, as we do not always want to see the output.

2. Log message timestamps, which do not normally come with system outs.

3. Log message sources, which show where a message actually came from. This is critically important
when diagnosing software issues.

The severity levels in order are:

1. DebugLog.LVL_ERROR: This is used when the program has encountered an error which will cause it
to exit.

2. DebugLog.LVL_SEVERE: This is used when a part of the program cannot continue as requested.

3. DebugLog.LVL_WARN: This is used when a part of the program may not function as intended, or
something has the possibilty to fail.

4. DebugLog.LVL_INFO: This is used for important operating information only.

5. DebugLog.LVL_DEBUG: This is used for debugging outputs which are temporary and/or infrequent.

6. DebugLog.LVL_STREAM: This is used for constant outputs. For instance, controller positions are under
the stream level. The difference between STREAM and DEBUG is critical; don’t mix them up.

2.1 Code execution
The RobotStartup class is what the API actually runs. The robot is based of FRC’s IterativeRobot. This
class will link directly with the Global class, and is actually what calls the EventManager’s processEvents()
function. You should never need to modify this file, as it serves only to link the default FRC API to the
rest of the code.

The file that you will need to modify is Global. The Global class actually controls the initialization
and setup of the robot. Put all global resources (such as motors, gyros, etc.) in this file as public
static [final] values. As this system is Event-driven, you won’t need to actually execute any code
yourself after initialization. Instead, put all Events you’d like to run in this class under the appropriate
initialize* function.

Let’s say I wanted to create a simple drive program. Here’s how we would do this most effectively:

public static final XControl xControl1 = new XControl (1);
public static final MotorLink mLeft = new MotorLink(new Jaguar (1,1));
public static final MotorLink mRight = new MotorLink(new Jaguar (1,2));

public static void initializeTeleop () {
ListenerManager.addListener(new Event () {

public void execute () {
Global.mLeft.setPower(Global.xControl1.y1+Global.xControl1.x1);
Global.mRight.setPower(Global.xControl1.y1-Global.xControl1.x1);

}
}, ListenerConst.UPDATE_JOY1);

}

3

These are the only changes you would need to make to create a fully functional drive
program. (Bear in mind, all foreign classes will be explained later. For now, all you need to know is that
XControl is an XBox 360 Controller, MotorLink is a better way to set motor powers, and ListenerConst
is a class which holds the listener strings so you don’t have to type them every time.)

So, what does this code do? First, it creates the mLeft, mRight, xControl1 global resources. These
can be used everywhere simply by specifying Global.[varname] Then, in initializeTeleop(), the program
adds an Event to the ListenerManager which will be run when joystick 1 on the controller changes. This
way, the function doesn’t run every iteration, but only runs when it needs to.

2.2 Package structure
The following is the full package structure for our architecture:

\---frc3128
+---EventManager : Used for Event control
| \---EventSequence : Used to sequence events together, as in autonomous
+---HardwareLink
| +---Controller : Used for the various allowed controllers
| +---Encoder : Used for encoder declarations
| +---Motor : Used for motor declarations
| | \---SpeedControl : Used for motor speed controllers (incomplete)
| \---Pneumatics : Used for pneumatic control
\---Util : Used for generic utilities, such as DebugLog

\---Connection : Used for external connections (incomplete)

3 What are Events, and how do I use them effectively?
Events are small blocks of code which can be run dynamically. The code for an event goes inside the
event’s abstract public void execute() function. Events have three modes: single run, iterable, and
timed.

• A single run Event will be run once, then removed from the EventManager’s queue.

• An iterable Event will run continuously until it is stopped. There are three things which will stop
an Event:

1. It causes itself to halt.
2. It is caused to halt by an outside command.
3. It throws an exception/error, which will not be handled by EventManager.

• A timed Event will be run after a certain amount of time. These work in a particular way; when
you call a timed event, it creates an iterable TimerEvent. The TimerEvent will run until the time
has expired, then delete itself and trigger the associated Event. In this way, timed events are really
just normal iterable events with a timed trigger.

3.1 Small blocks of code
Events can be used to handle small blocks of code or small, linear instructions. This is primarily use-
ful when you’re dealing with buttons, but has other uses. This also works well in conjunction with
ListenerManager. One always declares and names these events based on their effects, not their
triggers. For instance, you wouldn’t name an event ButtonADownEvent, but rather MotorSpinUp and add
it to the trigger for "buttonADown".

class MotorSpinUp extends Event {
public void execute () {Global.motorSpin.setPower (0.7);}

}

class MotorSpinDown extends Event {
public void execute () {Global.motorSpin.setPower (-0.2);}

}

4

Then, elsewhere:

ListenerManager.addListener(new MotorSpinUp (), "buttonADown");
ListenerManager.addListener(new MotorSpinDown (), "buttonAUp");

3.2 Drive events
Drive events work in much the same way as above, but they contain more code, and are on broader
triggers. For instance, you’d put a drive event on the joystick update event, not a button event. This
should be fairly straightforward, given the previous event description.

3.3 Controller events
Controller events are much more complex. They are one of the few iterable events you’ll ever run in your
program. The constructor typically inserts the event into the EventManager. This event needs to keep
track of the state of the controller, and call appropriate listeners when there is a change. For instance,
our AttackControl event is defined as follows:

public class AttackControl extends Event {
public double x, y, throttle;
public Joystick aControl;
private final int controlID;
private boolean [] buttonsPressed = {false , false , false , false , false ,

false , false , false , false , false , false };

public AttackControl(int port) {
aControl = new Joystick(port);
controlID = port;
this.registerIterableEvent ();
DebugLog.log(DebugLog.LVL_DEBUG , this , "AttackControl added self to

event manager!");
}

public void execute () {
boolean updateJoy = false , updateThrottle = false;

if(x != aControl.getAxis(Joystick.AxisType.kX)) updateJoy = true;
if(y != aControl.getAxis(Joystick.AxisType.kY)) updateJoy = true;
if(throttle != aControl.getAxis(Joystick.AxisType.kThrottle))

updateThrottle = true;

x = aControl.getAxis(Joystick.AxisType.kX);
y = aControl.getAxis(Joystick.AxisType.kY);
throttle = aControl.getAxis(Joystick.AxisType.kThrottle);

if(updateJoy)
ListenerManager.callListener(ListenerConst.UPDATE_ATK_JOY);

if(updateThrottle)
ListenerManager.callListener(ListenerConst.UPDATE_ATK_THROTTLE);

if(updateJoy || updateThrottle)
ListenerManager.callListener(ListenerConst.UPDATE_DRIVE);

for(int i = 1; i < 11; i++) {
if(buttonsPressed[i] != aControl.getRawButton(i)) {

ListenerManager.callListener(ListenerConst.getAtkCtrlListenerKey(
this.controlID , i, aControl.getRawButton(i)));

DebugLog.log(DebugLog.LVL_STREAM , this , "Button " +
(this.controlID + "-" + i) +
(aControl.getRawButton(i)==true?" pressed.":" released."));

}
buttonsPressed[i] = aControl.getRawButton(i);

}

5

}
}

As can be seen, the AttackControl event will trigger listeners whenever something in the controlelr
state changes. For instance, if the throttle updates, it invokes ListenerConst.UPDATE_ATK_THROTTLE. This
is an example; you are free to add your own controller types as well as modify ours.

3.4 Sequencing events in autonomous
The EventSequencer is the primary class used during autonomous. It allows for sequencing of as many
SequenceEvents as you’d like.

A SequenceEvent is almost the same as an Event, wtih two major differences: First, it has an ad-
ditional abstract function called exitConditionMet() to indicate whether the current task has finished.
Additionally, it keeps track of how long it’s been running, which allows for timings and such. There
are two default variants of the SequenceEvent: the SingleSequence which runs once and exits, and the
TimedSequence which runs for a certain amount of time then exits. The default SequenceEvent can be
used for custom exit conditions, such as a tilt motor angled properly, or a camera in line, or some such.

Let’s look at an example autonomous program:

public static void initializeAuto () {
EventSequencer autoSeq = new EventSequencer ();

autoSeq.addEvent(new TimedSequence (1000) {
public void execute () {

Global.mLeft.setSpeed (0.7);
Global.mRight.setSpeed (0.7);

}
});

autoSeq.addEvent(new SequenceEvent () {
public void execute () {

Global.mLeft.setSpeed (-1);
Global.mRight.setSpeed (0);

}

public boolean exitConditionMet () {
return !(Global.mLeft.getEncoderAngle () < 50);

}
});

autoSeq.addEvent(new SingleSequence () {
public void execute () {

Global.mLeft.setSpeed (0);
Global.mRight.setSpeed (0);

}
});

autoSeq.startSequence ();
}

So, what does this do? It should be rather clear from the way it’s written: When the autonomous
program initializes, the it adds a timed event that moves the robot forward for one second. Then, it
adds a SequenceEvent which turns the robot counterclockwise until mLeft’s encoder angle is less than
50 degrees. Then, it adds a single event which stops the robot from moving. Then, startSequence() is
called to insert autoSeq into the EventManager’s stack. These events will be executed in order once the
EventManager runs at the start of autonomous.

4 Hardware interface classes
The FIRST API has some organizational issues which do not fit well with the event-driven system. As
a result, we’ve created a *Link class (e.g. MotorLink, GyroLink) for each piece of hardware we use. This

6

not only allows us to customize the way hardware works, but also allows us to change the hardware
interface without changing code function should their API change.

All of the harware interface classes take their respective FRC API items as arguments. Why did we
do this? Because otherwise it becomes atrociously unclear what you’re sending to the class. For instance:

new MotorLink (1, 2, 1, 5, 2, 3, new LinearAngleTarget (0.1, 0.1));

is vastly less clear than:

new MotorLink(new Jaguar(1, 2), new MagneticPotEncoder (1, 5, 2, 3), new
LinearAngleTarget (0.1, 0.1));

4.1 Motor encoders
The encoders and speed controllers feed into the MotorLink class, so we will discuss those first. The
AbstractEncoder class effectively creates a way for a MotorLink to have an associated encoder, regardless
of its type. For instance, we want the motor to handle the optical encoder as well as the magnetic
potentiometer in the same way - internally, at least.

All encoders must have two functions: getAngle() and getRawValue(). This class is abstract instead
of an interface as abstract classes, for an unknown reason, are much faster on the cRIO than interfaces.
To create an encoder, simply insert extends AbstractEncoder.

4.2 Motor speed controllers
The speed controllers are similar to encoders, but are significantly more complex. They work off in-
dividual time steps. They are events so as to easily facilitate this. There are four abstract functions:
setControlTarget(), speedTimestep(), clearControlRun(), isComplete().

• setControlTarget() accepts the value to be controlled to, whether it is a speed, position, or other.
The class accepts this value, and does whatever it needs to do with it.

• clearControlRun() resets the speed controller after a control run is complete.

• isComplete() indicates whether the speed controller’s goal is complete.

• speedTimestep() computes the power for the associated MotorLink class. It returns a double, which
becomes the new power of the motor.

None of the default speed controllers are tested or complete, and this package is still in testing. Use
it with some degree of caution.

4.3 MotorLink
The motor itself is controlled by the MotorLink class. The motor can be associated both with a speed
controller and encoder, but can also be set normally. There are a few important behaviors and features for
MotorLink. Bear in mind that running erroneous actions (such as deleting a nonexistent speed controller,
replacing an active speed controller, setting the power while a motor is under speed control, etc.) will
generally not stop the MotorLink.

• Encoders and speed controllers can be added, changed, and set at any time. Changing an active
speed controller produces a severe level debug message (see DebugLog). Changing an encoder at
all will produce a warning.

• The reverseMotor() function will change the direction of a motor. This is important, as positive
powers should generally always mean clockwise.

• The power scalar on the motor adjusts what the maximum bound for power output is, where
0 < x < 1.

• Trying to set the motor’s power while a speed controller is active will cause the speed controller to
halt.

This class is largely untested as of 9/28/13, so there may still be errors.

7

4.4 Pneumatics
The PneumaticsLink controls the pneumatic systems on the robot. The PistonID class keeps track of
which piston you’re handling. All it holds is an index, though it can also be used to reverse the polarity
of the piston (e.g. change out to in, in to out). To set a piston, simply invoke the correct PneumaticsLink
function on the correct PistonID. The PneumaticsLink currently only supports dual solenoid valves, such
as Festos.

The functions will not be detailed here, as they are rather self-explanatory.

5 Other utilities
DebugLog was covered at the start of this document. The Constants class is effectively a pile of settings
and flags. The comments in the constants file will explain what they are for. RobotMath contains a couple
basic robot math functions, and any others you feel should be added.

6 Conclusion
Hopefully this document helps introduce you to the FRC Team 3128 even-driven control system! And,
additionally, we hope this helps you during competition. The programming intro document contains
information on setting up NetBeans and the FRC API. The programming tasks document contains a
tutorial for newcomers on how to actually write code in this API.

See you at the field!

8

