
Pathing: a simplified approach

Ryan Pappa

robots@rpappa.com

Abstract. ​A common problem in robotics applications is developing a path

planning and following system that enables robots to perform pre-planned

motions. In 2018, FRC Team 340 explored an approach to pathing that aimed to

make the process extremely simple. It relies on two drive encoders and a

gyroscope. This approach is based off parametric equations (especially Bézier

curves) and simple differential calculus. The complexity of any given

implementation can be adjusted as desired.

1. An introduction to parametric equations

Most high schoolers are familiar with functional relationships, where an equation

takes an independent input variable and outputs a dependent value. In parametric

equations, a third variable (call it ​t​) is introduced that is generally independent of

the coordinate plane. The ​x​ and ​y​ coordinates are found via two separate

functions, each taking ​t​ as an input. This is seen in projectile motion, where ​y

position of an object is represented by ​y​ (​t​)=​y​ o​ +​v​ oy​ t​ +(½)​a​ y​ t​ 2​ and ​x​ position by

x​ (t)=​x​ o​ +​v​ ox​ t​ , with ​t​ representing time. Although ​x​ and ​y​ behave independently,

both are dependent on time. The (​x​ ,​y​) position can only be found through passing

time to both equations. Parametric equations allow interesting shapes to be drawn,

such as a circle (​x​ (​t​)=cos(​t​), ​y​ (​t​)=sin(​t​)), or the butterfly shape shown in figure 1.

Figure 1: an example parametric

1

Later we will explore Bézier curves, a type of parametric equation, as they are

extremely useful for defining paths for a robot to follow

2. An introduction to differential calculus

The derivative of a function ​f​ (​x​), represented as ​f ​ ′(​x​), is simply the ​slope ​of the

tangent ​of a particular line at any given x-value.

Figure 2: If the black line is a function ​f​ (​x​), the slope of the red line equals ​f ′​ evaluated at the point’s ​x​ -value

There are a lot of rules for differentiating, which will not be explored in this

document, but one must understand the nature of a derivative in order to

understand this approach to pathing.

3. The theory behind 340’s approach

The rest of this paper is based on the use of, at a minimum, one drive encoder

(ideally two) measuring distance traveled and a gyroscope measuring the robot’s

angle. We assume a basis of a simple closed-loop controller that can drive while

keeping a desired angle. This kind of system is commonly used to drive straight,

where the desired angle is 0​o​. With error calculated by ​Error​ = ​gyro ​ - ​desired​ ,

gyro output gives the error directly, since ​gyro ​ - 0​o ​= ​gyro​ .

Let’s define a path ​P​ as ​P​ (​in​), where ​in ​ is some input variable. Accordingly, the

equation for the derivative of ​P​ is ​P′​ (​in​).

2

We will start by telling our robot to drive forward. The value, in inches, our drive

encoders will be defined as ​d​ . As we drive, we calculate ​P′​ (​d​). Now we have the

slope of the tangent of our path. If you are following a path, your drive rails

should always be parallel to its tangent, so thus by finding ​P′​ (​d​) you have found

the slope of the lines created by your left and right drive rails. Additionally, you

can find the current slope of your drive rails by finding the tangent of your gyro

output, ​m​ =tan(​gyro​).

The angle between two slopes is found through this equation:

rctanθ = a |
|

m −m1 2
1+m m1 2

|
|

Thus, given the variables of your distance, ​d​ , and gyro angle, θ, you can find the

error in your robot’s angle:

rror arctan()E = P (d)−tan(θ)′
1+P (d) tan(θ)′ *

We simply pass this error back into the closed-loop system that was previously

used to drive straight, and our robot follows the path ​P​ . In fact, we do not even

have to define ​P​ in the code, but rather can just tell the robot the equation for ​P′​ ,

its derivative. Any path which can be modeled and differentiated can be followed.

Now we simply have to figure out how to define paths that take distance traveled

as an argument.

4. Using Bézier Curves

Bézier curves commonly used in computer graphics. They are defined through

parametric equations where the ​x​ and ​y​ equations are polynomials that take an

argument, ​t​ , which is the percentage (from 0.0 to 1.0) of the curve you have

progressed through. They can be designed through a group of control control

points.

3

Figure 3: an example Bézier curve

Explore more about Bézier curves’ construction ​here . 1

Simply put, Bézier curves are perfect for this application. Since we know where

our robot should start and end, we can make a curve that takes in those two points,

and visually adjust the two control points in the middle to produce the desired

motion. Once we have the curve defined, we generate the parametric and its

derivative. All we need to put in our code is the curve’s derivative (P’) and its

length (​L​). As the robot moves, we evaluate

rror rctan()E = a P ()−tan(gyro)′ d
L

1+P () tan(gyro)′ d
L *

We divide our distance travelled by the length of the curve, since the domain of

the Bézier curve, and thus also its derivative, is between 0.0 and 1.0. Passing this

error back into the closed loop function allows us to follow any Bézier curve.

5. 340’s implementation: defining paths

In the robot code, paths are defined through one or more PathSegments, where

each segment is a function’s derivative (defined through a ​lambda function) and 2

its length.

For now, I have made a relatively barebones ​website for creating paths. Figure 3 3

is an example of a path generated by our website. The positive x-axis is forward

1 https://www.desmos.com/calculator/cahqdxeshd
2 https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
3 http://paths.rpappa.com/
Source code https://github.com/rpappa/path-site

4

https://www.desmos.com/calculator/cahqdxeshd
https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
http://paths.rpappa.com/

relative to the robot’s position at the start of the path, and left and right

correspond to negative and positive on the y-axis. The website generates

PathSegments that can be pasted directly into the Java code. In the code, paths

look like this:

new​ PathSegment(t ​->

/*

{"start":{"x":0,"y":50},"mid1":{"x":46,"y":48},"mid2":{"x":51,"y":109},"end":{"x":

112,"y":108}} */

(​-​6​ ​+​ ​378​ ​*​ t ​+​ ​-​375​ ​*​ Math​.​pow(t, ​2​))​/​ (​138​ ​+​ ​-​246​ ​*​ t ​+​ ​291​ ​*​ Math​.​pow(t, ​2​))

, ​131​));

The commented section is a JSON object that can be imported into the website.

6. 340’s implementation: calculating error

In ​RunPath.java , we have a method ​dydx​(​double​ ​s​)​ that finds the PathSegment 4

our robot is currently following and calculates the derivative at the given ​s​ value,

which is the distance we have traveled across the entire Path.

We calculate error using the method ​deltaAngle​(​double​ ​currentAngle​)​, which

takes gyro yaw as an argument. It first finds
currentSlope ​=​ Math​.​tan(currentAngle)
nextSlope ​=​ dydx(getDistance())

To find the error, in degrees, we use the previously shown equation:
angle ​=​ Math​.​atan((nextSlope ​-​ currentSlope)​/​(​1​ ​+​ currentSlope ​*

nextSlope))

This angle is what is returned by ​deltaAngle​.

4
https://github.com/Greater-Rochester-Robotics/PowerUp2018-340/blob/master/Team340PowerUp2018/src/org/usfir
st/frc/team340/robot/commands/pathing/RunPath.java

5

https://github.com/Greater-Rochester-Robotics/PowerUp2018-340/blob/master/Team340PowerUp2018/src/org/usfirst/frc/team340/robot/commands/pathing/RunPath.java

7. 340’s implementation: closed loop function

The closed loop we use is essentially a P loop, first implemented in our ​2017

codebase . At the time, it was used exclusively for driving straight, with nobody 5

recognizing its potential application for pathing. The final implementation of it

can be found in our 2018 code, in the RunPath.java file.

The loop is called in ​execute​ in the RunPath command. It takes in our error from

deltaAngle​ and an input speed. Mathematically, it functions as follows:

utSpeed inSpeedo = ± divisor
error inSpeed*| |

The divisor is essentially a P constant. For the left rail, we add to the input speed,

for the right rail, we subtract. Generally, both drive rails are being set to

same-signed numbers, to produce arcing motions as opposed to turning on a point.

8. The future of this approach

There’s a lot that could be added. The most obvious is to use more kinematics,

regulating velocity and acceleration. That shouldn’t be too hard to do: just pass

the output of the kinematics controls into the input speed on the closed-loop

control.

Speaking of closed-loop, actually using PID for closing error would probably

bring benefits.

I started work on an “animations” system, where one can specify robot motions to

occur at different points along the path.

5
https://github.com/Greater-Rochester-Robotics/Steamworks2017-340/blob/master/src/org/usfirst/frc/team340/robot/
commands/DriveRails.java#L74

6

https://github.com/Greater-Rochester-Robotics/Steamworks2017-340/blob/master/src/org/usfirst/frc/team340/robot/commands/DriveRails.java#L74
https://github.com/Greater-Rochester-Robotics/Steamworks2017-340/blob/master/src/org/usfirst/frc/team340/robot/commands/DriveRails.java#L74

The theory behind this approach seems to be widely applicable. I would love to

see ports to other robotics systems. C++ WPILib, Arduino, and possibly even

Lego robots are all viable targets.

Our most immediate goal is to wrap this all into an easy-to-use, well-documented

library. Abstracting just a few methods (setDriveRails, getDistance) could make

this a 5 minute job to port into any robot’s codebase.

9. Conclusion

Here I have explained an approach to path following that I feel is a perfect

balance between simplicity and performance. I hope that teams can use this to

improve their controls system, whether by using my specific implementation or

by building upon the theory in their own.

If you need any help or have further questions, please feel free to contact Justin

Tervay or myself . Furthermore, exploring 340’s 2018 GitHub repo as well as 6 7 8

the pathing website and its source code may help you understand exactly how 9 10

we used the ideas laid out in this paper to help win 2 blue banners.

This is my first time writing a paper like this, and I sincerely hope I have done a

good job explaining what I personally find to be an exciting step towards raising

the bar across all of FRC.

10. Acknowledgements

Justin Tervay (justin@tervay.com): assisted in implementation and testing of this

approach, has helped a few other teams implement it for the 2018 season and will

6 ​justin@tervay.com
7 ​robots@rpappa.com
8 https://github.com/Greater-Rochester-Robotics/PowerUp2018-340
9 http://paths.rpappa.com/
10 https://github.com/rpappa/path-site/

7

likely be helping maintain it after I graduate. He was the mentor who oversaw the

majority of my work as I developed this and his help was simply irreplaceable.

FRC Team 340: provided me with 5 years of experience culminating with this

pathing work. Furthermore, provided 3 different robots to test this on (one of

which went on to win 2 regionals and rank 5th at champs—huge shoutout to

everyone involved with that!)

8

