
TRANSACTIONS ON HIGH SCHOOL ROBOTICS, VOL. 1, NO. 1, AUGUST 2013 1

Vision Processing and Frisbee Shooter Controller
Design

John D. Russo and Travis Axtell

Abstract—This paper outlines a vision processing algorithm
used during the 2013 FIRST Robotics Competition game Ultimate
Ascent by FIRST Team 2035. The vision processing was per-
formed off robot on the driver station laptop and relevant infor-
mation was provided to the robot over the arena network, which
improved the robot response time considerably when compared to
processing on the on-board cRIO. This vision processing scheme
won the Innovation in Control Award sponsored by Rockwell
Automation at the Silicon Valley Regional. Once the robot sees
the field targets, it estimates the distance to the target. A Frisbee
shooter controller can then estimate the Frisbee flight path and
choose shooter aim angle to improve the chance of gaining points.

Keywords—FIRST Robotics Competition, vision processing, Fris-
bee, controller.

I. INTRODUCTION

THE annual FIRST Robotics Competition game for 2013
had a requirement to launch WHAM-O Frisbees into

three differently sized rectangular goals [1]–[3]. This task
can be performed consistently without computer assistance
using a predetermined robot field position. However, using
the advanced features of the robot controller, it is possible
to program the robot to actively perform acquisition, tracking
and alignment of the robot towards the Frisbee goals. This
is beneficial because the game rules limit how many Frisbees
may be held by a robot, and collecting Frisbees takes precious
match time, so increasing the efficiency of acquiring and
launching the Frisbees can drastically improve game score.

The competition uses a laptop computer running a Dash-
board and Driver Station programs to control the robot. The
Dashboard provides feedback from on-board robot sensors
and a AXIS webcam. The driver station allows for joystick
input and transmits the user control data packets over the
wireless network to the robot. The processing on the robot
is performed on a National Instruments cRIO, which is a
microprocessor computer. In the competition, this device can
run one executable compiled from either: LabView, C++,
Python, or Java.

This paper outlines the approach taken by FIRST Team
2035, The Robo-Rockin’ Bots, for vision processing. This
technique employs the modest driver station laptop to process
the webcam images, resulting in quicker processing than on the
cRIO. The resulting information from the laptop are simple
image pixel coordinates, pixel lengths of bounding boxes
surrounding detected targets, and an estimated distance to the
targets. The driver station joystick buttons are programmed to
point the robot at a specific target based on the image coordi-
nate information. The original work on this image processing
technique won the 2012 Silicon Valley Regional Creativity
Award sponsored by Xerox, and the follow up work in 2013
won the Silicon Valley Regional Innovation in Control Award
sponsored by Rockwell Automation.

Corresponding author email: jdr9012@gmail.com

Fig. 1: The rectangular goals are located at three different
heights on the field from [3].

The second section of this paper outlines an approach to use
the distance estimation to evaluate a Frisbee launch angle from
the robot. Although this approach was not demonstrated in the
competition, this information is provided to give a complete
reference to the intended direction of the robot programming.
With the correct calibration, the robot Frisbee launching would
be very consistent. The goal of this work is to allow the robot
to shoot from any field position with high reliability of a
successful Frisbee goal.

II. VISION PROCESSING

The purpose of vision processing is to increase the repeata-
bility of the Frisbee shots. Teams without this type of process-
ing were able to shoot from predetermined positions on the
field. Even under these circumstances, teams would routinely
miss shots. A vision processing technique to identify the goals
can increase the likelihood of improved shot performance from
any field position where the shooter mechanism has the ability
to hit the target.

The game competition used three rectangular Frisbee targets:
a low target (29”×24”), a medium target (54”×21”), and a
high target (54”×12”) as shown in Fig. 1. These targets were
surrounded by 4-inch retro-reflective tape for simplified vision
processing when illuminated with a color LED ring light that
surrounded the webcam aperture. These bright LEDs caused
a strong single-color reflection which improved the signal-to-
noise ratio for image processing.

The work presented in this paper began due to the McKaskle
vision targets whitepaper [4], which outlined information of
how to improve the signal-to-noise ratio of the square vision
targets. Using this, the team developed a step-by-step pro-
cedure in the National Instruments Vision Assistant tool to
identity field targets. Since the team uses Java programming on
the cRIO, the Vision Assistant code was not able to be ported
to the cRIO. Instead, the team modified the driver station
laptop Dashboard program to include the Vision Assistant
code. Additional features to improve calibration were also



2 TRANSACTIONS ON HIGH SCHOOL ROBOTICS, VOL. 1, NO. 1, AUGUST 2013

Fig. 2: The block diagram of where code is executed in the
software between the driver station laptop and robot cRIO.
The specific information and how it is transported between
the hardware is shown for the arrows.

added to the Dashboard. The Vision Assistant processing
output was then relayed to the robot cRIO over the arena
network for robot control. The block diagram representation
of the software layout is given in Fig. 2.

A. Vision Assistant

The vision assistant is a simple block-diagram utility to
create step-by-step vision processing scripts for LabView.
After testing the script using multiple input pictures to confirm
correct operation, the LabView script is easy saved from the
utility. This script can be added into another LabView program,
such as the robot code (if using the LabView on the cRIO) or
onto the Dashboard program. The script developed is shown
in Fig. 7 on page 6. The descriptions of each component of
the script are as follows:
Original Image LabView acquires the original image in HSL

color format. This is the image that the webcam is
outputting at roughly 30 fps. The image size for our use
was 480 × 360 pixels.

Color Threshold Outputs a binary image where the pixel is
True if the HSL threshold values are met, and False
otherwise. This step finds the green-color response from
the retro-reflective tape.

Convex Hull Fills an enclosed space (such as the retro-
reflective tape perimeter in the binary image) to be a large
solid rectangle. Convex means all the points on a line
from a point on the filled area to another point in the
filled area are still in the filled area.

Lookup Table Applies predefined lookup table transforma-
tions to the image to modify the dynamic intensity of
regions in the image with poor contrast. We did not use
this since we were using a binary image output from Color
Threshold.

Size Check Removes areas that are too small to be real targets
of interest. Sometimes the Color Threshold will return
small areas of noise that are not actual targets. This step
removes these areas to prevent issues with the following
steps.

Filters Includes functions for smoothing, edge detection, and
convolution. We used it for edge detection since we had
a binary image.

Image Calibration Option to output real world units (inches
rather than pixels) to the remaining blocks. We used

Fig. 3: A geometric model of a camera is the basis for
estimating the distance to the target.

pixels, but this was used to check to see if it is a
reasonably-sized target during testing.

Shape Detection Isolates the rectangles as individual objects
and ignores other shapes.

Particle Analysis Gives the bounding box parameters of each
object, and the x, y pixel coordinates of the center of each
rectangle.

Further details on the specifics of each of these blocks is
available in [6]. The LabView script output is shown in Fig. 8
on page 6.

B. Labview Dashboard

The dashboard is modified to support several changes; the
most important of which is that the vision processing script
is added to the dashboard. A user display of the dashboard is
shown in Fig. 9 on page 7. The modifications required some
major changes to the underlying block diagram of the Front
Panel, shown in Fig. 10 on page 7.

The calibration features added to the dashboard are three
text fields that select numbers between 0 and 255 for the HSL
values [5] used in the Vision Assistant for thresholding, and
sliders that reflect the selected range. These were only changed
when moving to a new arena, as the lighting conditions affect
the optimal values for the Vision Assistant.

The vision processing algorithm estimates the distance from
the robot to the vision target as

d =

1
2

(
FOVpixel

Tft
Tpixel

)
tan θ

2

(1)

where d is the estimated distance to the target, FOVpixel is
the field of view measured in pixels, Tft is the target height
in feet, Tpixel is the target height in pixels, and θ is the
camera’s field of view measured in degrees or radians. A visual
representation of Eq. (1) is in Fig. 3. The vertical heights of
targets were used because lateral movement around the field
results in large perspective changes for the horizontal width of
targets. The FOVpixel is known from the camera settings and
Tft is known, but does change based on which target is being
used to determine the distance. The quality of the estimation
decreases as a function of actual distance. This calculation
is performed in LabView using the block diagram shown in
Fig. 11 on page 8.

After the target distance is calculated, the values are trans-
mitted outside of LabView over to the robot using Network-
Tables. This is demonstrated in Fig. 12 on page 9.



RUSSO AND AXTELL: VISION PROCESSING AND FRISBEE SHOOTER CONTROLLER DESIGN 3

C. Java Robot Code

Using the Java WPILIB implementation of NetworkTables,
the coordinates for up to 6 targets are received on the robot.
The Vision Assistant algorithm will correctly populate the
list starting with target 0 up to as many targets are seen.
However, the algorithm has no guarantee on the ordering of the
targets. In fact, after processing one image of targets, the next
image’s target ordering may be completely different. Since it
is unreliable to refer to a target as “target 0” since its position
in the list may change, the targets must be sorted.

Sorting is very simple thanks to using some additional
information about the target geometry and relative position
between targets. The different shapes of targets can be used in a
calculation of aspect ratio, which is simply width/height (both
measured in pixels). The relative position of targets also is used
to place the coordinate information into targets labelled “Top,”
“RMid,” “LMid,” “RBot” and “LBot” which is shorthand for
Right/Left and Middle/Bottom. If only a single target is seen
(i.e., the robot is close and looking at only the bottom left
target), then the target “Top” is always populated.

The complete robot code is available on GitHub [7]. The
joystick operator interface code (OI.java) programmed five
buttons for the targets. Thus, holding a single button would
establish target lock on a particular target if available. The
robot code then uses the WPILIB implementation of a PID
controller (used as a P or PI controller only) to center the
target in the field of view of the robot camera by rotating the
entire robot. This centering happens very quickly, and now that
the robot is centered on the target, the Frisbee launch angle
needs to be determined for a successful shot.

III.FRISBEE TRAJECTORY CONTROL

For the robot shooting Frisbees long distances (over, say 10
feet in length), the Frisbee flight path has an arc that can make
aiming for the target difficult. The target Frisbee bins were 24
inches, 21 inches and 12 inches tall. Particularly the narrow
opening requires the Frisbee flight path to be understood well
enough to ensure a high probability of a successful shot from
various field locations.

Many robots were limited to particular shooting locations
on the field. In general, most of these positions also ensured
a fairly straight Frisbee shot (and close distance) from the
robot to the goal and there was no attempt to account for the
Frisbee trajectory. Teams used contact with the field pyramid as
a means to prevent interference from the opposing alliance (in
accordance with the game rules). In addition, most robots could
only load Frisbees at a loader station that was approximately 54
feet from the goals. If the trajectories for long distances were
correctly estimated, the robot could stay near the loader station
and launch Frisbees over the entire field. We encountered one
team that did do this, but their shooting has to be calibrated
manually by human and this involved many missed shots.

In this section, we describe a method that allows for robots
to aim for the targets over a longer range that requires ac-
counting for the Frisbee’s trajectory. The robot design used by
FIRST Team 2035 allows for a variable aim angle and shooting
speed from a fixed height Frisbee turret. This technique
estimates the aim angle, and estimating shooting velocity is
also possible. The only required information during gameplay
is the distance to the wall. This controller was never fully
implemented on the robot, but is included to share the concept
that the robot controller was headed towards.

Fig. 4: The coordinate frame begins directly in front of the
robot on the ground.

A. Frisbee Equations of Motion

Equations of motion are used to mathematically model the
movement of an object (such as a Frisbee). In kinematics,
the position of an object is described as a function of time.
Describing a Frisbee’s flight using mathematics has been the
focus of a Master’s thesis and journal article [8], [9]. To solve
for the position, we simply create small steps in time and at
each update the acceleration, velocity, and position. Although
in this arrangement time is the independent variable, we do not
care how long a Frisbee flight takes for our particular problem.
The objective is that the Frisbee flight path has the correct
height at the estimated distance from the goal. We evaluate
the equations for as much time as necessary until the Frisbee
has landed.

The equations of motion are nonlinear, which can compli-
cate analysis (this is not a deterrent – simply a fact). A small
change in a single parameter can have very different flight
trajectory outcomes. Thus, accurate parameter estimation is
important for a physically meaningful result. Unmodelled (or
incorrectly modelled) parameters can be detrimental on the
usefulness of a model. For example, these equations model
ground distance and altitude, but they do not model the
lateral motion of the Frisbee. If the Frisbee launcher causes
a significant lateral motion, then we will have to compensate
for this.

Before we describe the equations of motion, we first provide
the coordinate frame that the equations exist in. This is shown
pictorially in Fig. 4.

The drag and lift coefficients are specified by

α0 =
−CL0
CLα

(2)

CD = CD0 + CDα (α− α0)
2 (3)

CL = CL0 + CLαα (4)

where the parameters used are given in Table I. These values
are only computed once because they do not change as a
function of time (in this Frisbee model). These concepts are
further explained in Aerodynamics literature as lift and lift-
induced drag.

To solve for the Frisbee flight trajectory, we use Euler’s
method [10]. For each time step, we first compute the accel-
erations ∆vx and ∆vy .



4 TRANSACTIONS ON HIGH SCHOOL ROBOTICS, VOL. 1, NO. 1, AUGUST 2013

TABLE I: All quantities used in evaluating the Frisbee Equa-
tions of Motion.

Quantity Meaning Value
α Frisbee launch angle Chosen [radians]
A Frisbee area 0.0613 [m2]
m Mass of Frisbee 0.180 [kg] from [11]
d Diameter of Frisbee 0.2779 [m] from [11]
h Height of Frisbee 0.0348 [m] from [11]
g Acceleration of gravity -9.81 [m/s2]
ρ Density of air 1.23 [kg/m3]

at sea level
CD0 Form drag Estimated 0.18

[dimensionless]
CDα Induced drag Estimated 10

[dimensionless]
CL0 Intercept Estimated 0.33

[dimensionless]
CLα Slope Estimated 1.91

[dimensionless]
α0 Lift angle offset Computed in Eq. (2)

[radians]
CD Drag coefficient Computed in Eq. (3)

[dimensionless]
CL Lift coefficient Computed in Eq. (4)

[dimensionless]
∆t Time increment Chosen 0.01 [s]
∆vx[n], Change in velocity Computed in Eq. (5)
∆vy[n] per time increment Computed in Eq. (6)

[m/s2]
vx[n], Current velocity in Computed in Eq. (7)
vy[n] x and y direction Computed in Eq. (8)

[m/s]
x[n], Current position in Computed in Eq. (9)
y[n] x and y direction Computed in Eq. (10)

[m]

∆vx[n] =
1

2m
ρ(vx[n− 1])

2
ACD, (5)

∆vy[n] =

(
g +

1

2m
ρ(vx[n− 1])

2
ACL

)
. (6)

The square brackets indicate that we are forming a vector and
n is the integer index. The actual time in the simulation can
be determined using t = n∆t, though the time of flight is
not of interest in this problem. A vector with N entries uses
n = 0, 1, 2, . . . , N − 1.

Second, the velocity is then updated using

vx[n] = vx[n− 1] + ∆vx[n]∆t, (7)
vy[n] = vy[n− 1] + ∆vy[n]∆t. (8)

Finally, the positions are computed using

x[n] = x[n− 1] + vx[n]∆t, (9)
y[n] = y[n− 1] + vy[n]∆t. (10)

To initialize the solution, a Frisbee launch angle, α, is

chosen. Then vx[0] and vy[0] can be estimated using

vx[0] = V cosα,

vy[0] = V sinα

where V is an estimate of the shooter mechanism linear
velocity (from knowing the RPM rate) and the shooter launch
angle. The initial position values can be taken to be x[0] = 0
and y[0] is the height of the robot shooter in meters.

We continue this loop of evaluating equations (5) to (10)
until y[n] < 0, indicating the Frisbee has landed.

B. Estimating Unknown Parameters
The referenced papers that identified the formulas for the

Frisbee equation of motion cannot provide all the necessary
information about the particular FIRST game Frisbee discs.
The diameter, height and weight were specified by [11]. Some
of these quantities are not known, but are estimated from a
variety of techniques.

Unknown values can be substituted from another Frisbee,
ideally as similar as possible. In several cases, we chose values
close to the ones given by [9].

Estimating quantities can be done by simple physical obser-
vation over many trials and the only judgment can determine
if the estimated values make physical sense. A Frisbee could
be thrown many times and the maximum height, ground
distance to the maximum height, and landing distance could
be recorded. The difficulty is in knowing the Frisbee launch
angle and if that launch angle is consistent with the shots. The
shooting hardware for the robot could be utilized for this type
of study, rather than a human throwing.

Another method for estimating the parameters is a rigorous
analysis using math and engineering thought processes. An en-
tire master’s thesis has been performed on the flight dynamics
of Frisbee flight [8]. The tools used in that thesis could be
applied to the official FIRST game Frisbee to determine the
unknowns. The thesis even uses optimization techniques to find
the “best fit” of parameter values, which is an excellent use of
that theory.

C. Evaluating the Equations for Different Frisbee Launch
Angles

These equations can be evaluated on the cRIO for the current
aim angle to position the robot the correct distance from the
goals. However, we did not need to do this. A lookup table
would suffice to choose a angle from the vision processing’s
current estimated distance from the target. The equations can
be solved and the robot code need only have the distance
and angle values. Many launch angle trajectories are shown
in Figures 5 and 6.

The robot for FIRST Team 2035 was equipped with a gyro
sensor on the Frisbee shooter. We would estimate our current
shooting angle using this sensor. When the look up table
specified a different angle to shoot at, the gyro would be used
to ensure the shooter moves to the correct angle. Like the robot
position controller in Sec. II-C, the shooting angle would be
set through a PID controller.

Although we only built a look-up table for a shooting angle,
it is possible to do this for an angle and velocity. If the shooting
velocity of the Frisbee can be controlled (such as monitoring
the RPM rate of the mechanism), then it would be possible to
also control the velocity. In this arrangement, if the robot must



RUSSO AND AXTELL: VISION PROCESSING AND FRISBEE SHOOTER CONTROLLER DESIGN 5

maintain its current position and adjust the aim angle and disc
velocity, a Frisbee goal could still be completed. This would
greatly enhance the opportunities to overcome obstacles met
during game play.

IV.CONCLUSION

This paper presented a novel technique for vision processing
of rectangular targets used during the 2013 FIRST Robotics
Competition game Ultimate Ascent. The paper outlined the
step-by-step procedure of using the driver station dashboard
to process the vision targets and transmit information to the
on-board Java program running on the robot.

The second contribution of this paper was a Frisbee tra-
jectory based controller to assist in selecting launch angle

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

10

12

14

distance to target (ft)

fr
is

be
e 

he
ig

ht
 (

ft
)

 

 

0 degrees

10 degrees

20 degrees

30 degrees

40 degrees

45 degrees

medium target

high target

Fig. 5: The trajectories of six different Frisbee launch angles
are shown. The top and bottom of the middle and high goals of
Fig. 1 are shown as dashed lines. A tick mark is placed when
the trajectory crosses through the middle of a goal (crossings
with very steep slope are not marked). From these tick marks,
we know what angle to shoot at from a given ground distance
to the target.

0 10 20 30 40 50
−2

0

2

4

6

8

10

12

14

distance to target (ft)

fr
is

be
e 

he
ig

ht
 (

ft
)

Fig. 6: The angles between 10◦ and 45◦ with 1◦ degree
separation are shown. A look up table could quickly be
established from this data to determine the appropriate angle
for a given distance.

for the robot. This is done to improve the likelihood of a
successful shot into a goal since the Frisbee flight path is
not a straight line over long distances. Although this was
not implemented in time for the competition, the concept is
explained for educational purposes.

ACKNOWLEDGMENT

The authors would like to thank FIRST Team 2035 for
putting up with the programming team. This work was sim-
plified due to Greg McKaskle’s whitepaper. This work was
possible due to the sponsors of FIRST Team 2035: Carmel
Unified School District, Monterey Bay Aquarium Research In-
stitute, Naval Postgraduate School, FOCUS, Padre Parents, El
Camino Machine and Welding, SJ Automation, KnappWerks
and Carmel Valley Video.

REFERENCES

[1] US FIRST website. [Online]. Available: http://www.usfirst.org/
[2] FIRST Robotics Competition Game. [Online]. Available: http://www.

usfirst.org/roboticsprograms/frc/game-and-season-info
[3] FIRST Robotics Competition Game manual. [Online]. Available: http:

//frc-manual.usfirst.org/
[4] G. McKaskle. Vision Targets white paper. [Online]. Available: https://

decibel.ni.com/content/docs/DOC-20173
[5] Wikipedia: HSL and HSV. [Online]. Available: https://en.wikipedia.org/

wiki/HSL and HSV
[6] National Instruments Vision Assistant Tutorial. [Online]. Available: http:

//tinyurl.com/n92c88z
[7] FIRST Team 2035 Java code repository for year 2013. [Online]. Avail-

able: https://github.com/jesusrambo/ScraperBike2013
[8] S. Hummel, “Frisbee Flight Simulation and Throw Biomechanics,” M.S.

Thesis, Dept. Mech. Engr. Univ. California Davis, Davis, CA, 2003.
[9] V. R. Morrison, “The Physics of Frisbees,” Electronic Journal of Classical

Mechanics and Relativity, Mount Allison University, pp 1–12. Apr, 2005.
[10] Wikipedia: Euler’s Method. [Online]. Available: https://en.wikipedia.

org/wiki/Euler method
[11] AndyMark 2013 FRC Game Pieces Frisbee. [Online]. Available: http:

//www.andymark.com/FRC-2013-Disc-p/frc-2013.htm

John Russo is a freshman at Bucknell University
working towards a double major in Electrical Engi-
neering and Neuroscience. His passion for robotics
started five years ago with his involvement with
FIRST team 2035. Under his leadership, the team
received two prestigious awards for Innovation in
Control, and Creativity in Design. His best summer
memory was an internship under Dr. Timothy Chung
at Naval Postgraduate School in Monterey, California
developing communication protocols for swarming
UAVs.

Travis Axtell began his involvement in FIRST robotics as a high school
senior. He has mentored 3 FRC teams (342, 612, 2035) over 5 years in
topics of programming and robot control. Travis graduated cum laude from
Clemson University with a Bachelor of Science in Electrical Engineering and
has a Master of Science in Electrical Engineering from the Naval Postgraduate
School. He is a Department of Defense SMART Scholarship recipient and a
Ph.D. candidate in Electrical Engineering performing research on space-based
imaging systems.

http://www.usfirst.org/
http://www.usfirst.org/roboticsprograms/frc/game-and-season-info
http://www.usfirst.org/roboticsprograms/frc/game-and-season-info
http://frc-manual.usfirst.org/
http://frc-manual.usfirst.org/
https://decibel.ni.com/content/docs/DOC-20173
https://decibel.ni.com/content/docs/DOC-20173
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
http://tinyurl.com/n92c88z
http://tinyurl.com/n92c88z
https://github.com/jesusrambo/ScraperBike2013
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
http://www.andymark.com/FRC-2013-Disc-p/frc-2013.htm
http://www.andymark.com/FRC-2013-Disc-p/frc-2013.htm


6 TRANSACTIONS ON HIGH SCHOOL ROBOTICS, VOL. 1, NO. 1, AUGUST 2013

Fig. 7: The vision script layout using Vision Assistant. The input picture is in the upper left and the algorithm output is given
in the large center image. The step-by-step procedure is listed along the bottom. This image is embedded at full resolution and
can be copied outside of this PDF document.

Fig. 8: This is the output script from the Vision Assistant. The only modification to the script is to use the calibration settings
from the Dashboard Front Panel rather than explicit constants. The modification is at the far left. This image is embedded at
full resolution and can be copied outside of this PDF document.



RUSSO AND AXTELL: VISION PROCESSING AND FRISBEE SHOOTER CONTROLLER DESIGN 7

Fig. 9: Front Panel of the Dashboard display. The new vision processing option is shown on the left. There are several new
panels on the far right that show network connection status and the HSL calibration settings. This image is embedded at full
resolution and can be copied outside of this PDF document.

Fig. 10: This is the block diagram of the main display of the Dashboard. The webcam calibration settings and the option to
enable vision processing are performed here. The vision processing script appears as a single icon (script.vi). This figure
has markup comments to explain the purpose of the various groupings of blocks. This image is embedded at full resolution and
can be copied outside of this PDF document.



8 TRANSACTIONS ON HIGH SCHOOL ROBOTICS, VOL. 1, NO. 1, AUGUST 2013

Fig. 11: The Range Finder is the distance calculation to the target. It always uses Target numbered 0, which guarantees if the
algorithm sees any target that it is calculating a distance. This image is embedded at full resolution and can be copied outside
of this PDF document.



RUSSO AND AXTELL: VISION PROCESSING AND FRISBEE SHOOTER CONTROLLER DESIGN 9

Fig. 12: This block diagram takes each of the targets center x and y pixel coordinate and places those values into separate entries
in the NetworkTable. This image is embedded at full resolution and can be copied outside of this PDF document.


	Introduction
	Vision Processing
	Vision Assistant
	Labview Dashboard
	Java Robot Code

	Frisbee Trajectory Control
	Frisbee Equations of Motion
	Estimating Unknown Parameters
	Evaluating the Equations for Different Frisbee Launch Angles

	Conclusion
	References
	Biographies
	John Russo
	Travis Axtell


