

Battery Load Limiting

...All models are wrong, but some are useful.

Overview

- Background on Brownouts
- Physics Intro
- Modeling the Drivetrain
- Limiting the Battery Load
- Results from 2016

Warning: (some) Math Ahead.

- Minimal, Simplistic, Hand-wavey
- See the whitepaper for proofs

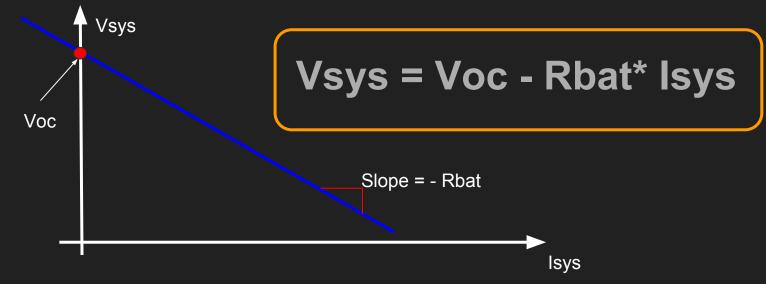
What is a brownout?

 Undesired component shutdown, due to low system voltage.

- System voltage gets low, sometimes.
 - Dead Battery?
 - Old Battery?
 - Big Load?

Background on Brownouts

- New-ish on roboRIO
- Low system voltage causes problems
- Defined thresholds for certain events
 - Vsys < 6.8V
 - Motors & Servos turned off
 - Vsys < 6.3V
 - Power removed from SPI & I2C Devices
 - Vsys < ~4.5V
 - RIO reboot


Pre-Existing Solutions

- Mechanical design updates
 - Fewer motors
 - Less-aggressive gearing
 - Wheel modifications (more slippy)
 - Good answers, but compromises may not be acceptable
- Ramp motor commands in software
 - Also good, but requires some tuning...

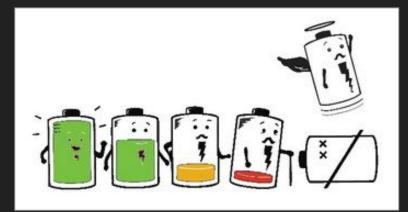
Understanding Batteries

Electrical Model for Battery

- Batteries convert chemical energy into electrical energy
- Chemical reaction provides a voltage (Voc), some internal resistance (Rbat)
- Battery provides an output voltage to the robot (Vsys).
- Robot exerts a load on the battery (Isys)

Why This Matters:

- Vsys = Voc Rbat* Isys
- Given Voc, Rbat, and Isys, we can calculate Vsys
- If we can calculate Vsys for a theoretical lsys, we can *predict* a system voltage drop before it happens
- If we foresee brownout-inducing Vsys levels, we can also *prevent* them.
- The 3-part quest:
 - <u>Characterize</u> Battery (calculate Voc & Rbat)
 - <u>Calculate</u> theoretical **Isys** (motor physics)
 - <u>Prevent</u> bad behavior

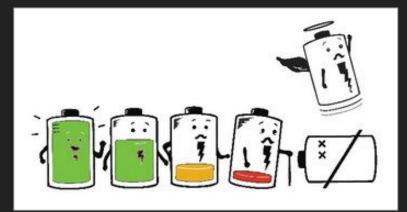


Part 1: Characterizing Batteries

Battery Discharge

- Open Circuit Voltage (**Voc**): *Down slightly*
- Internal Resistance (**Rbat**): *Increases*

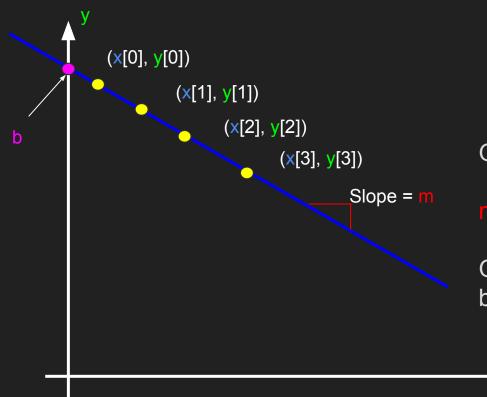
CAUSES


- Bigger Vsys variation with changing load (lsys)
- When load gets bigger, **Vsys** will dip a *lot* lower.

Vsys = Voc - Rbat* lsys

Battery Discharge

- Open Circuit Voltage (**Voc**): *Down slightly*
- Internal Resistance (**Rbat**): *Increases*


CAUSES

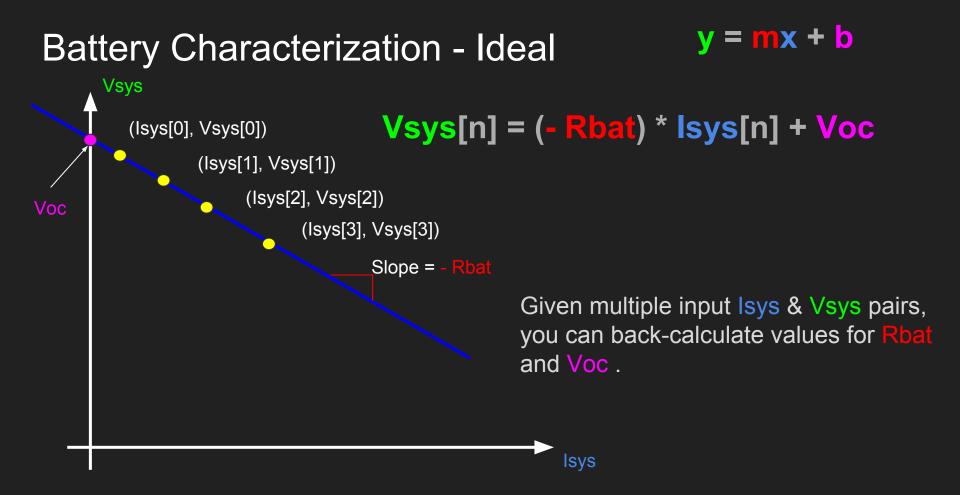
- Bigger Vsys variation with changing load (lsys)
- When load gets bigger, **Vsys** will dip a *lot* lower.

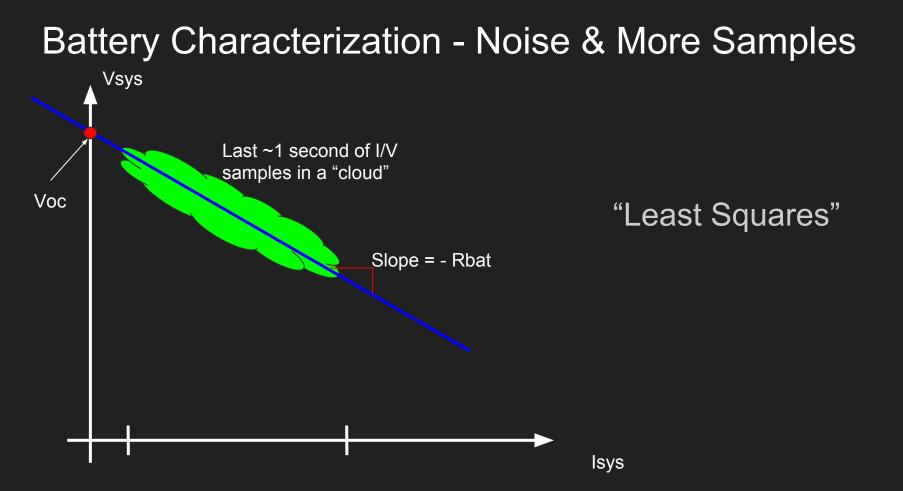
Vsys = Voc - Rbat* Isys Knowing these matters

Review - Slope-intercept form

$\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$

Given an input x, you can find an output y.


m and b are assumed constant.


X

Given multiple input x & y pairs, you can back-calculate values for **m** and **b**.

Battery Characterization

- We do know Vsys and Isys measured from the PDP
 - Slower, somewhat noisy, and delayed....
 - Not good for rapid decisions
 - But, battery parameters change slowly over time.
- We use measured Vsys and Isys pairs to characterize the battery
- Recall Vsys = Voc Rbat * Isys
 - This is nearly in **y** = **mx** + **b** (slope intercept) form:
 - Vsys = (- Rbat) * lsys + Voc
- Algorithm:
 - Measure & remember a set of Vsys, Isys pairs over recent history
 - Find a best-fit line through those pairs
 - The **slope** and **y-intercept** of this line are your battery parameters

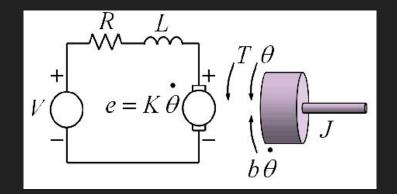
Battery Characterization - Constant Load

Vsys

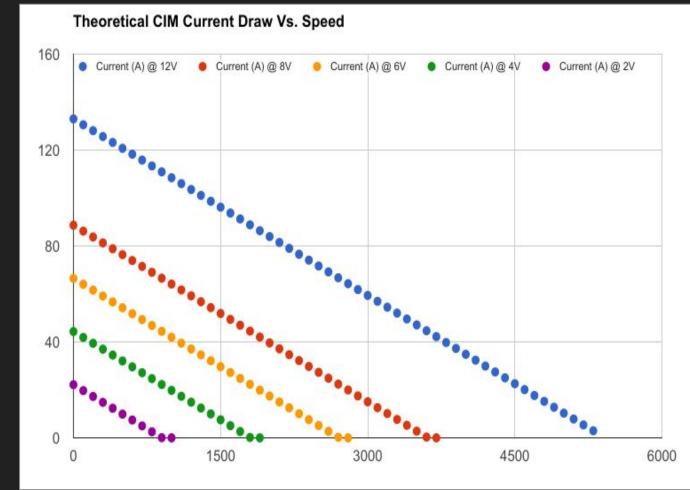
Last ~1 second of I/V samples in a "cloud" Voc? Slope? Slope? No new information - Hold last good value

Battery Characterization - Conclusion

- By remembering measured Voltage and Current pairs from the PDP...
- We can do some math....
- Then, we can estimate battery parameters **Voc** and **Rbat**


Part 1 of quest... Completed.

Part 2: Calculating Motor Current Draw


Motor Physics

- Motors convert electrical energy into mechanical energy
- Motor Current \rightarrow Torque (rotational pushing) on output shaft
- Motor Counter Electromotive Force (CEMF) → Opposing voltage generated within motor due to rotation
 - Motors == Generators because of this effect
 - Speed-to-Voltage Ratio is defined as the "motor velocity constant" (Kv)

Motor CEMF Effects

- CEMF Opposes the applied voltage to the motor
 - Voltage is applied by the speed controller
- The *bigger* the speed, the *bigger* the CEMF.
- The *bigger* the CEMF, the *lower* the current draw
- For the same CEMF, lowering the applied voltage will lower current draw

Motor Speed (RPM)

Current Draw (A)

Estimating Motor Current Draw

- Inputs needed:
 - Winding Resistance (calculated from motor's stall characteristics)
 - Rm = Vstall/Istall
 - Velocity Constant (calculated from motor's free-load characteristics)
 - Kv = (Vfree Rm*lfree)/ωfree
 - Motor Speed (Measured from encoder in RPM) (ω m)
- Use Formulas:

Estimate Total Current Draw - Conclusion

- Get driver commands
- Do some math to get the predicted **Im** for each motor
- Add up all **Im** terms.
- This is your predicted **Isys**

Part 2 of quest.... Complete

Part 3: Preventing Bad Behavior

Pulling it all together

• Recall: Vsys = Voc - Rbat * Isys

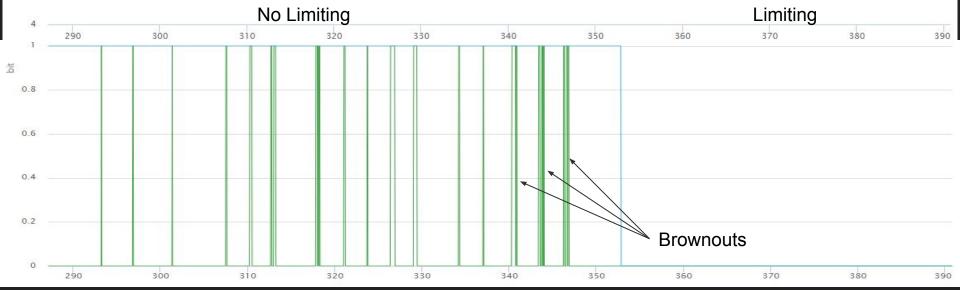
Pulling it all together

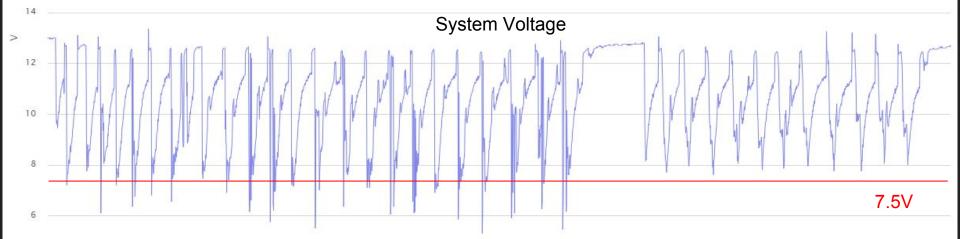
- Recall: Vsys = Voc Rbat * Isys
 - Voc, Rbat were calculated in Part 1
 - **Isys** was calculated for the present driver commands in Part 2
- By applying the above equation we now have an **estimate** for what Vsys will become if we execute the driver's commands exactly
- IS IT OK???

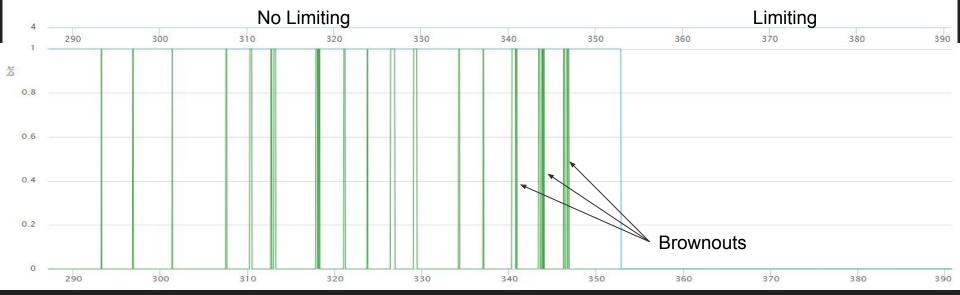
Limiting

- If your estimated Vsys is too low, we shouldn't do exactly what the driver commanded.
- Required mitigation: Reduce battery load.
 - Scale back drivetrain commands?
 - Power/Energy budget for all components?
- Complete answer is implementation dependent.
 - 1736: Try smaller and smaller scaling factors on drivetrain until we find one that works

Part 3 of quest.... completed!


Isys = Σ Im + ...


Real-world implementation

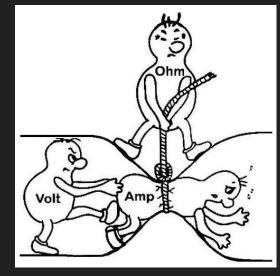

- Many resistances unaccounted for
 - Wiring, Speed Controllers, circuit breaker, connectors, etc.
- Capacitance/Inductance not modeled
- Some math presumes slowly-changing signals
- Battery parameters assumed independent of present load... mostly true?
- Not all current draw sources accounted for
- Filtering on measured values required
- But.... Good enough?
 - All models are wrong....

Results

Questions?

Special Thanks To: Sponsors: Caterpillar Inc., PTC, Peoria Police Benevolent Association Key Content Reviewers: Jeremey Lee, Larry Schmidt, Ether

Backup Slides


Electrical Primer

Voltage & Current

- Electricity = movement of electrons
- Voltage = how much force we're pushing on those electrons with
 - Always measured between two points
 - Measured in units of Volts (V)
 - Variable is usually V
- Current = how many electrons are moving
 - Always measured at a single point
 - Measured in units of Amperes (A)
 - Aka Amps
 - Variable is usually "I"

Resistance

- Opposes the flow of current
 - "Opposes" means it generates a push in the opposite direction
 - Recall that voltage is an electrical "push"
- Everything* has some resistance
- "Nice" resistors have the property:
 - V = I * R
 - V = pushback voltage
 - \circ I = current going through the resistor
 - R = some ratio (the "Resistance" of the material, measured in ohms)

The "Lumped Circuit" Model

- We group the various properties of a device into "lumps"
- We connect those lumps to show relationship
- The Resistance lump:

• The Voltage lump:

Battery Load

- For this presentation, we define "Load" to be the amount of current pulled from the battery
 - Isys
 - Can be measured at the PDP
 - Big load = lots of current (~150A or more)

Battery Lumped Circuit Model

Lumped Circuit Model for Battery - Diagram Equivalent Series Resistance (Rbat) \rightarrow System Current (Isys) \rightarrow <Robot> System **Open Circuit Voltage** Voltage (Voc) (Vsys) Battery

System Voltage vs. Motor Speed Calculations

Steady-State System Voltage Vs. Motor Speed @12V

Motor Speeds (RPM)