Running an FRC Team

FRC1114 – Simbotics Karthik Kanagasabapathy October 1st, 2014

Karthik Kanagsabapathy

- 17 years of FIRST experience
- Lead Mentor for Team 1114, 2004-present
 - 23 Regional Championships
 - 2008 World Champions, 2010 & 2014 World Finalists
 - 2012 Championship Chairman's Award
- 2005 Waterloo Regional Woodie Flowers Finalist Award
- TEDx Speaker http://youtu.be/MfC3JdkEVgQ
- Regional Manager, Innovation First International, Canada
- Chairman of the VEX Robotics Game Design Committees

Outline

- Team Organization
- Managing the Build Season
- Drive Team Selection

Team Organization

- An FRC team is much like a business
 - Work needs to be filtered through a hierarchy
 - Too much for one person to do on their own
- A strong partnership is needed between students and mentors
 - FIRST is not a science fair, students are not expected to, nor should they, do everything on their own
- Assign leaders to each sub-team
 - Creates a sense of ownership and responsibility
 - Student leaders or mentor leaders?
 - Both is ideal!

Sample Organization Chart

Engineering

- "The Robot Team"
- The engineering leader is the overall authority when it comes to all robot related decisions
- Co-ordinates between the three engineering subteams, and ensures areas of overlap are taken care of (crucial)
 - It's hard to split the robot up perfectly into distinct areas
 - e.g. Autonomous Mode
 - Strategy sets the priority
 - Design and Fabrication makes room for and mounts the sensors
 - Controls integrates, programs, and tests

Design and Fabrication

- Responsible for the mechanical design and build of the robot
- "Makes the robot do what it's supposed to do"
- Usually broken down into two areas
 - Drivetrain
 - Subsystems The mechanisms
- Takes design directives from the strategy team
- At competition, responsible for maintenance and upkeep of the robot

Strategy

- Responsible for the strategic design
- "What should the robot do"
- Analyzes the game and determines the game strategy
- At competition, they are responsible for match planning and execution
 - The drivers & coach should be a part of this team
- Scouting & Analytics
 - Gathering information about opponents to help decide on match plans and alliance selection
 - Analysis of gathered scouting data
- Great for students who might not seem like "robot people"
 - Sports fans!!!

Controls

- Responsible for making a mechanically sound robot work
- Electronics
 - Wiring the robot and installation and design of all sensors
- Software
 - Writing the code that allows the drivers to interface with the robot.
 - (or in the case of autonomous mode, the code that allows the driver not to interface..)
- Must be able to communicate well with the other engineering subteams!

Business

- A high functioning FRC team needs to run like a business
- Often overlooked and neglected
- This section of the team, allows the engineering side to function
- Brings funding, recognition and distinctions to the team
- A great opportunity to expose students to science and technology

Finance

- Responsible for creating and managing the team budget and business plan
- Entrepreneurship Award
- Fundraising
 - FRC is a very expensive program
 - Work with the Marketing team to spread the word about the team and contact potential donours

Marketing

- Responsible for getting the team publicity in the community and at competitions
- Graphics
 - Establishes team branding; logos, apparel, banners & signage, promotional materials
- Social Media
 - Responsible for establishing and maintaining a web presence
 - Website, Facebook, Twitter, Instagram, etc.
- Outreach
 - Spreads the word of FIRST in the community
 - Gives back to the community

Awards

- Responsible for the preparations of submissions and accompanying documentation for awards
- Most FIRST awards do not require a submission
 - Having a handout or display, with strong team branding for the judges never hurts!
- The Chairman's Award
 - The highest honour in *FIRST*
 - Requires a written submission and a presentation
 - Full seminar on this Award on October 29th!
- Woodie Flowers Award (mentorship)
- Dean's List Award (student leadership and excellence)
- Entrepreneurship Award

Team Organization Tips

- You don't need to have subteams for each area
 - There's lots of duplication. Choose based on the amount of students and mentors you have available
- The same goes for the award submissions
 - Don't bite off more than you can chew
- Try to have a mentor for each subteam
 - Recruit parents, industry professionals, anyone who might be interested.
- Don't restrict your team to "techies"
 - Lots of different skill sets are required for a successful team
 - Seriously, this is really important

Managing the Build Season

- Now that you have a team structure in place, it's time to get started
- For most of you, this is the largest project you have undertaken
- There is a hard deadline Ship Date
- The only way to succeed is to manage your time effectively
- 6 weeks and 3 days
- And extremely small amount of time for a very big project

Timeline – The Beginning

- Week 1
 - Brainstorming Days 1-4
 - Design Freeze begins Day 5
 - Established robot design
 - Mobility system frozen
 - Frozen means no more changes!!
 - General ideas for all mechanisms
 - Mechanism Prototyping Days 5-8
 - Build Drive System Days 5-14
 - Design Freezes
 - The more experienced you are, the later you can leave your design freeze
 - Prototyping determines a lot
 - The later you freeze, the less time you have to recover

Timeline – The Middle

- Week 2
 - Mechanism Build Days 8-21
 - Programmers Begin Coding Day 8
 - Can & should start pseudo-coding earlier
 - Build a test board!
 - Robot Controls Days 8-14
 - Drive System Complete Day 14
 - Having the robot moving early is crucial!! An emotional lift
- Week 3
 - Begin Autonomous Testing Day 15
 - Most FIRST autonomy only involve the chassis

Timeline – The End

- Week 4
 - Mechanism Integration Days 22-28
 - Wiring is not a quick job
- Weeks 5-6
 - Robot Done Day 29
 - Testing & Perfecting Days 29-40
 - Not as easy as it sounds
 - Weight Reduction
 - Design is an iterative process
 - The sooner you fail, the sooner you can improve
 - Driver Training Days 29-40
 - "Practiced drivers make bad robots win, and unpracticed drivers make good robots lose"

Timeline – Tips

- Perfectionism can kill the schedule
 - "Never let perfectionism get in the way of getting a good job done"
 - This robot doesn't need to last for 10 years!
- Your real lives are more important that FIRST!
 - Your family and marks come FIRST!
 - "All robots and no sleep make Johnny go crazy"
- The given schedule is a sample, like everything in FIRST it depends on your team's resources
 - Time, experience, manpower, funding, etc.
 - A practice robot changes things drastically!

Driver Selection

- FIRST is like auto racing, events are not always won by the best robots; it's often the best drivers
- Too important to be left to the last minute
 - Drivers need time to practice, and adjust to the pressure of the role
 - Prefer to have drivers picked before kickoff, but never any later than day 14
 - I prefer a lot of things in life that don't always end up happening...

Driveteam Roles

- Driver (x2?)
 - Responsible for all robot operation
 - Roles are usually divided with a Pilot and a Operator (Controls arms, pickup systems, etc)
 - Overlap can exist
- Field Coach
 - Responsible for planning match strategy, and communicating the strategy during the match
 - The overall decision maker on the field
 - Needs to understand the game inside and out

One Driver or Two?

- Robot specific decision
- Simple robots can easily be done with one driver
 - A simple robot with two drivers can result in redundancy that leads to slowness
- Complex robots typically necessitate a second driver
- Communication between drivers is critical!

- Maturity
- Communication Skills
- Passion/Enthusiasm/Dedication
- Driving Skill

- Maturity
 - FIRST competitions are stressful events; your driver must be able to handle pressure!
 - Dependability comes with maturity. You cannot afford to have a driver who will bail on you at the last minute
 - Consider students who've been through high level competitions – e.g. varsity athletes
 - Remember, maturity cannot be taught

- Communication Skills
 - Must be able to listen to instructions from the co-driver, and more importantly the coach
 - The inability to follow pre and in match strategies will result in losses
 - This is another skill that can't be instantly taught in a season

- Dedication/Passion/Enthusiasm
 - "Nothing great was ever achieved without enthusiasm"
 - The drivers need to be fully invested in the team
 - They have to be willing to make the team the priority
 - Become a top driver takes hundreds of hours of practice
 - An intense competitive spirit
 - Hey look, another skill that can't be easily taught in a season...

- Skill
 - Driving a FIRST robot requires top flight hand-eye coordination
 - A good understanding of spatial relations
 - The ability to see lanes; vision
 - Aggression you cannot be afraid to mix it up
 - Notice how skill comes after the other three?
 - With enough practice, anyone can develop driver skill
 - With the prevalence of video games, lots of people know how to manipulate a joystick...

Drive Coach Qualities

- Fast Thinking
 - Drivers have to be watching the robot at all times, they can't watch the whole field
 - Up to the coach to be aware of everything happening on the field
 - Like the offensive coordinator of a football team, the coach calls the plays
 - Needs to be aware of and calculate the score quickly
 - Can't always rely on the real-time scoring
 - Many matches have been won and lost by good and bad coaching

Drive Coach Qualities

- Authoritative
 - Drive coach must have the respect of his/her drivers
 - Drivers have to listen to the field coach without question
 - Crucial in short 2-minute matches
 - Drive coach must be able to get the team's point across in the pre-match strategy sessions
 - Teams can be pushy in these sessions, without a strong field coach, you'll end up with a plan that does not suit your team
 - I highly recommend that you choose an adult as a field coach
 - The only alternative is your most mature, strong willed and intelligent high school student, who has the respect of his teammates
 - Just my opinion, a lot of people disagree

Driveteam Decision

- How do we decide who makes the driveteam?
 - Choose your drive coach first
 - This person needs to be involved in the choice of the drivers
 - Base your decision on the aforementioned criteria
 - Also, chemistry matters; they need to get along
- Should we have tryouts?
 - Of the four major qualities, how many of them can be evaluated via a tryout?
- These people will be the faces of your team, for better or for worse
 - An understand of gracious professionalism in critical

Resources

- www.facebook.com/frc1114
- Twitter: @frc1114
- YouTube.com/Simbotics
- www.simbotics.org/workshops
- www.simbotics.org/scouting
- www.simbotics.org/app
- www.simbotics.org/kitbot
- Contact
 - Email: karthik@simbotics.org
 - Twitter: @kkanagas
 - Facebook: /karthik.kanagasabapathy
 - Feel free to ask questions, I actually enjoy this stuff!

