Using Neural Networks for Object Detection in Robotics
Competitions

Nicholas Hubbard
Team 1701, The Robocubs

25 February 2019

Abstract

The goal of this paper is to serve as an overly simplified
profile of how to build a neural network for detecting
objects specific to a singular situation.

To this end, in the following sections, the basics of
the linear algebra behind the neural network will be
explained, followed by the process of gathering, profiling,
and training data for the neural network.

1 Introduction

Much progress has been made in recent years on
object detection through the use of convolutional neural
networks (CNNs). Modern object detectors based on
these neural networks have simultaneously decreased
in complexity of usage and increased in performance
through many years of complex research, study and
critical analysis. The most common uses of CNNs
are in systems like Google Photos automatic memories,
which studies videos and automatically clips sections
to create short memorable moments. Another example
of CNNss is Pinterest Visual Search, which sort pictures
into searchable categories without any user intervention
and allows the user to virtually try on outfits from their
search results that the algorithm believes to match the
user’s taste.

However, it can be very difficult to decide what
architecture is best suited for applications like these.
CNN architectures are like dog breeds: there are far too
many to consider all of them, and some of them are polar
opposites of what would make a good choice for your

lifestyle. The main architectures considered for object
detection with neural networks are Faster R-CNN [1],
R-FCN [2], Multibox [3], SSD [4], and YOLO [5] [6]
[7]. These architectures have been thoroughly tested
in competitions such as COCO [8], where the fastest
architecture with the most accuracy wins.

Typically, before these architectures, competitions of
this sort were won by a multibox scanner; this system
would take random samples of an image, search for
specific image qualifiers like texture, color, or shape,
and then resize the box until the whole item is selected.
Unfortunately, while accurate, this solution required a
high amount of compute capability and had very high
latency; it could take up to ten seconds to return a result,
which made this solution impractical for processing
videos or large amounts of images at once.

While it is impractical to compare every recently
proposed architecture, most of them have been tested
with their thousands of tuning parameters. Therefore,
The main contributions of this project are as follows:

« Automating the labor-intensive process of marking
images using typical computer vision processes,
and the similarly labor intensive process of writing
annotation files for each marking in the image.

« Explaining how the different models affect results
and why the singular architecture chosen for this
application is the best for this application.

« Showing the results of the 100,000 training cycles
for the final model.

2 An Introduction to Linear Algebra
and Neural Networks

An object, as defined by a computer processing it through
a static image, prerecorded video, or a live stream from a
camera, is a simple sequence of rows and columns of a set
size with one (grayscale), three (RGB, HSV, HSL) or four
(CMYK) “channels”. These channels are show as tuples
within a matrix, like so:

(CL17CL27CL3) (b17b27b3) (01702703)

(w1, 22, 23) (Y1,92,93) (21, 22, 23)

This matrix of tuples is intended to replicate what
human eyes see as lines of light in the form of individual
pixels. It makes up the first layer of a neural network,
a system designed to replicate the function of the brain
in interpreting various types of information. For each
row and column in the matrix, there is one individual
input tensor (variable size 2D or 3D matrix for storing
information) in the initial layer of the neural network. If
a neural network accepted inputs in the form of 28 by 28
pixel RGB images, there would be 784 tensors with three
values from 0 to 1 representing each portion of color in
the pixel. Each number in each individual tuple is called
the activation of each channel of color in each individual
pixel. Assuming the same image composition as before,
there are now three times as many inputs in the initial
layer, for a total of 2,352 individual inputs.

All of these individual inputs make up the first layer of
the network. Moving far forward to the last layer of the
network, there is one final tensor for each possibility that
the network is attempting to predict. If the goal of this
network is to predict two different possible items for an
image, then there are two tensors at the end representing
the desired results, each with a label attached to them
to provide a human-readable understanding of the final
product.

Between the beginning and the end of the network,
there are several hidden layers, which hide the complex
logic required to extract features and colors, match
portions of images and transform areas of images to
match a specific contour or figure. Activations of the
initial layer are fed into the first of many hidden layers,

which can be theoretically infinite in amount, only
limited by compute resources available to the operation.
These activations are loosely analogous to how scientists
explain neurons in the brain: one initial activation is fired
by a neuron, then numerous dependent actions occur,
and finally, the final neuron activation fires to finish
the chain reaction and produce the desired result. Each
hidden layer processes a subcomponent, or partial area,
of an image to classify; as the layers progress, these
subcomponents are merged together to create a resulting
classification of the detected object.

Each layer of the network has an innumerable amount
of dials to adjust to cause hidden layers to function in
different ways. These dials adjust different functions
in the network, but are all interlinked in some way.
To ensure that only the important pieces of inferred
information are released, they are all assigned weights to
mark the more important and less important pieces of
information as the network progresses. When the final
layer is reached, all of these weights are added together
and combined to make a final confidence in the result:

wia1 + Waa + W3az + Waayg + ... + Wpay

If the network was trying to find the portion of an
image that has a boundary assigned to it, all of the
irrelevant information is assigned a negative weight to
reduce the possibility of finding bad information, and the
important information is assigned a positive weight to
ensure it is used in the final calculations of the result.

After computing the weighted average, the network
must rebase the weighted average to ensure that it falls
between 0 and 1, as the raw activation value could fall
anywhere from 1.17549 x 10738 to 3.40282 x 1038 (this is
the standard range for floating point numbers defined by
IEEE-754). The most common solution for this problem
is the logistic curve, also known as a logistic curve:

B 1
Clde®
The neural network designer can also introduce bias,

which ensures a tensor can only be activated when a
number is within a specified range. This may be the

o(x)

simplest part of the neural network: to introduce bias,
a static number is added (to ensure activation below that

number) or subtracted (to ensure activation above that
number) is added to the weighted average of the tensor.

Every layer has weights and biases, making networks
highly optimized input and output systems. Complexity
of these networks is determined by adding the number
of initial tensors times the weights for each layer, and
adding the sum of every bias to the total. This quantifies
the extreme complexity of the problems faced when
using neural networks.

Wrapping up all of the information in this section,
this is what the final resulting network looks like
mathematically:

Wo,0 +b wo,1 +b wWo,n +b ag ?
w1,0 +b w11 +b W1,n +b aq ?
WE,0 +b WEk,1 +b Wik,n +b Qp, ?

The left matrix is the weighted average (calculated
using the sigmoid function), the middle matrix is the
layer’s tensor activation, and the right matrix is the final
output sent to the next tensor. This process is repeated
for every layer of the neural network, to finally retrieve
a single final value for the end of the neural network.

3 Automated Generation of Training
Annotations

The most labor intensive process is not attempting to
understand how neural networks work, but is the process
generating all of the required information to ensure
that training goes smoothly. Typically, this is a very
manual process using tools such as GIMP (The GNU
Image Manipulation Program) and a text editor to load
images of objects and mark rectangles around each object
to detect, then writing down the coordinates of each
object.

Instead of completing this process by hand, we
automated our process using C++ and OpenCV, an
open source computer vision toolkit. OpenCV defines
a concept called contours. These are the outer edges of
an object in an image. Usually, before contours become
involve, the image is thresholded to cut out the majority
of other items in the image, eroded to cut out small areas

of an image that thresholding does not catch, and dilated
to ensure the eroded contour has the same size as the
actual object in the image. Finally, the resulting image
is run through the Suzuki-Abe [9] algorithm to find the
borders of the detected object, and is run through the
Ramer-Douglas-Peucker [10] [11] algorithm to fit the
curved contours into a rectangular shape.

The coordinates of this rectangular shape are retrieved,
and written into an annotation file about the image,
describing to the computer how to delineate portions of
an image from the rest of the image. It is stored in the
XML-based PASCAL VOC training descriptor format.

4 Training on the Dataset

Training a dataset is an extremely complex and difficult
process to complete. Training on a run-of-the-mill
CPU for this dataset isn’t even possible - the training
process takes nearly sixteen times as long per iteration,
rendering a final model that can take nearly fourteen
days to complete training on. Instead, the dataset must
be trained using the compute cores in a GPU (known
as CUDA on Nvidia platforms, or ROCm on AMD
platforms) or a TPU (Tensor Processing Unit) from the
likes of Google or Intel.

This performance requirement unfortunately means
that training the dataset is nearly impossible without
expensive graphics cards, processors, memory and
discrete hardware. Fortunately, such hardware is
available with a low cost penalty through the use of cloud
computing. Google, for example, offers their Machine
Learning Engine platform for $1.21/node/hour. (One
node contains an Nvidia Tesla K80 GPU, a custom Intel
Xeon processor with 8 CPU cores, and 30 gigabytes of
RAM.) When training the final model for this project, our
configuration consisted of a total of 9 nodes, with one
master node controlling the eight worker nodes. The
master node is outfitted with the same configuration
described above, sans GPU; the worker nodes are
outfitted with the same configuration and a GPU. The
training process with this configuration ran for 2 hours
and 50 minutes, and cost a total of $34.46 to complete
training to 100,000 iterations.

To train our model, we started with a pre-trained
model provided by Google running on the MobileNet

v2 [12] platform. This is a model platform built from
scratch to run on lower-power devices without large
performance and accuracy hits. Using a concept called
transfer learning, an existing model trained on a dataset
can be re-trained on a new dataset provided by the
operator.

Devices that have a capable C++ compiler, such as an
Nvidia Jetson TX1 or TX2, can be made to run model
inference (an implementation of the model) with a low
amount of latency and power draw. This takes a large
amount of time, however, as the TensorFlow package
must be compiled for every platform necessary if a
suitable binary package does not already exist.

5 Optimizing the Model for

Inference

There are many optimizations which can be applied
to both the runtime platform and the model itself to
decrease inference latency. Here are some of the
solutions we used for optimizing the model for low
inference time.

+ Compiling the runtime for the target platform.
This can make a significant difference in inference
time. TensorFlow is completely unavailable for
non-Intel platforms in a pre-compiled fashion, and
OpenCV is the same. To run TensorFlow and
OpenCV on an Nvidia Jetson, for example, you
can compile both software packages using GPU
computations with NVIDIA CUDA and NVIDIA
TensorRT, and CPU computations using ARM
NEON extensions. These optimizations vastly
improve inference times, sometimes by a factor of
15 to 30 times faster.

« Optimizing the model with runtime tools.
TensorFlow provides two tools to optimize
and improve models for inference on less powerful
platforms. The first is the TensorFlow Lite
Optimizing Converter (TOCO), an automatic model
reduction tool that increases performance by
eliminating expensive computations and reduces
size by eliminating unused connections within
the model. TOCO is typically used when running

a model on Android or iOS. The second tool is
the Graph Transformation tool, which is a highly
modular tool with many options to improve
performance and reduce model size.

« Using the original runtime. This may sound
obvious, but OpenCV offers the option to run
TensorFlow models without TensorFlow being
present. While convenient, since TensorFlow takes
along time to compile, the results were less accurate
and slower than using TensorFlow for inference and
OpenCV to visualize the inference.

« Changing training options. This is the most
difficult option, but reduces headaches in the end
of the training process. There are options within
the training configuration that can significantly
reduce the model size and complexity, such as
pre-quantization. Quantization is when the training
process is done exclusively on 8-bit integer numbers
instead of 16 or 32-bit floating point numbers,
and results in a model that runs much faster
on platforms that don’t have many optimizations
applied. Models can be quantized after-the-fact
with the Graph Transformation tool, but the results
are limited because post-quantizing the model can
affect the accuracy significantly.

6 Running Model Inference

Running inference on the model is typically the most
difficult part of the process. It requires a very high-speed
device with the machine learning runtime being heavily
optimized for the device (see above). Because of this
heavy need for optimization, we selected the Nvidia
Jetson platform, specifically the Nvidia Jetson Nano.

Unfortunately, the Jetson Nano has not been released
to the general public yet. For testing purposes before
deployment, we ran initial model inference on a Dell
XPS 15 with a 6™ Generation Intel Core i5 and an
Nvidia GeForce 960M. Both TensorFlow and OpenCV
were compiled explicitly for the target platform to
ensure full optimization. On this platform, spectacular
accuracy was observed in the setup. Because of neural
network intrinsics, no calibration for lighting, shadows,
or distance solving is necessary.

Here is a graph indicating performance averages over

time for the various optimization methods we used.

These methods are as follows:

1. Unopt. is an unoptimized model as created by the
training process.

2. Unopt. + TRT is an unoptimized model combined
with TensorRT live optimization.

3. First Opt. is a “partially” optimized model using the
tactics described at the link https://git.io/fj3CV.

4. First Opt. + TRT is the same optimizations
combined with TensorRT.

5. Second Opt. is a “fully” optimized model using the
tactics described at the link https://git.io/fj3Cw.

6. Second Opt. + TRT is the same optimizations
combined with TensorRT.

FPS by Optimization Profile

Second Opt. + TRT f

Second Opt. } } }

First Opt. + TRT f

First Opt. f

Optimization Profile

Unopt. + TRT |

Unopt. f

00 m | il
liEHIEE!

35 40 45

[ad
==}
ot
ot
[=2]
(==}
[=2)
(2}

FPS

Figure 1: Range of FPS by Optimization Profile

The other problem with running inference is the sheer
amount of code required to run inference is draining. To
help fix this problem, we created a library for working
with neural networks called VIK. It vastly simplifies
the amount of code needed for working with neural
networks. It is open source, fully documented and tested
for others to use.

Acknowledgments

I would like to than the following people for their advice
and support throughout the duration of this project:
Noah Husby, Rich Wong, Peter Guenther, Jim Terry,
Michael Vinarcik, and Elisabeth Wood. Without their
support and encouragement, I don’t think this massive
undertaking would have been possible.

References

[1] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster
R-CNN: towards real-time object detection with
region proposal networks. CoRR, abs/1506.01497,
2015. URL: http : / /arxiv . org /abs / 1506 .
01497.

J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object
detection via region-based fully convolutional
networks. CoRR, abs/1605.06409, 2016. URL: http:
//arxiv.org/abs/1605.06409.

C. Szegedy, S. E. Reed, D. Erhan, and D. Anguelov.
Scalable, high-quality object detection. CoRR,
abs/1412.1441, 2014. URL: http: //arxiv . org/
abs/1412.1441,

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E.
Reed, C. Fu, and A. C. Berg. SSD: single shot
multibox detector. CoRR, abs/1512.02325, 2015.
URL: http://arxiv.org/abs/1512.02325.

J. Redmon, S. K. Divvala, R. B. Girshick, and A.
Farhadi. You only look once: unified, real-time
object detection. CoRR, abs/1506.02640, 2015. URL:
http://arxiv.org/abs/1506.02640.

J.Redmon and A. Farhadi. YOLO9000: better, faster,
stronger. CoRR, abs/1612.08242, 2016. URL: http:
//arxiv.org/abs/1612.08242.

J. Redmon and A. Farhadi. Yolov3: an incremental
improvement. CoRR, abs/1804.02767, 2018. URL:
http://arxiv.org/abs/1804.02767.

T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev,
R. B. Girshick, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312,
2014. URL: http://arxiv.org/abs/1405.0312.

https://git.io/fj3CV
https://git.io/fj3Cw
https://github.com/Robocubs/VTK
https://vtk.readthedocs.io
https://coveralls.io/github/Robocubs/vtk
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1405.0312

[9]

(11]

S. Suzuki and K. Abe. Topological structural
analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image
Processing, 30:32-46, Mar. 1985. por: 10 . 1016 /
0734-189X(85)90016-7.

U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics
and Image Processing, 1(3):244-256, 1972. 1SSN:
0146-664X. po1: 10 . 1016 / S0146 - 664X (72)
80017-0.

D. H. Douglas and T. K. Peucker. Algorithms for
the reduction of the number of points required
to represent a digitized line or it’s charicatures.
Cartographica: The International Journal for
Geographic Information and Geovisualization,
10(2):112-122, 1973. por: 10 . 3138 /FM57 - 6770~
U75U-7727.

M. Sandler, A. G. Howard, M. Zhu, A.
Zhmoginov, and L. Chen. Inverted residuals
and linear bottlenecks: mobile networks for
classification, detection and segmentation. CoRR,
abs/1801.04381, 2018. URL: http://arxiv.org/
abs/1801.04381.

https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381

	Introduction
	An Introduction to Linear Algebra and Neural Networks
	Automated Generation of Training Annotations
	Training on the Dataset
	Optimizing the Model for Inference
	Running Model Inference

