
3/28/2011 Ether

SWERVE DRIVE

Calculate wheel speeds and wheel steering angles
for holonomic (3 degrees of freedom) control

Let FWD, STR, and RCW be the Forward, Strafe Right, and Rotate Clockwise driver
commands, respectively.

So for example, with a 3-axis joystick, we might ha ve:

FWD = -Y (vehicle goes forward when joystick is pu shed forward)

STR = X (vehicle strafes right when joystick is p ushed to the right)

RCW = Z (vehicle rotates clockwise when joystick is twisted clockwise)

- OR -

With two 2-axis joysticks, we might have:

FWD = -Y1 (vehicle goes forward when joystick1 is pushed forward)

STR = X1 (vehicle strafes right when joystick1 is pushed to the right)

RCW = X2 (vehicle rotates clockwise when joystick 2 is pushed to the right)

... or any other interface that provides driver inputs for the 3 degrees of
freedom.

RCW will be scaled in the formulas below to create a +1 (or –1) wheel speed
command at each wheel for pure rotation when RCW eq uals +1 (or –1) and FWD & STR
both equal zero. If desired, multiply RCW by some fraction to reduce the gain
of the rotate command.

Next, if so desired, apply the gyro angle so that t hese become field-centric
commands. θ θ θ θ is the gyro angle, measured clockwise from the zero position (zero
normally being set to straight downfield):

temp = FWD·cos(θ) + STR·sin(θ);
STR = -FWD·sin(θ) + STR·cos(θ);
FWD = temp;

Now convert the vehicle motion commands into wheel speed and angle commands
(inverse kinematics):

Define the following constants:

L is the vehicle’s wheelbase

W is the vehicle’s trackwidth

R = sqrt(L 2+W2);

It doesn't matter what measurement units are used f or L and W, since only ratios
will be used in the calculations.

3/28/2011 Ether

To simplify the math, define variables A, B, C, and D.

Perform the following calculations for each new set of FWD, STR, and RCW
commands:

A = STR - RCW·(L/R);

B = STR + RCW·(L/R);

C = FWD - RCW·(W/R);

D = FWD + RCW·(W/R);

ws1 = sqrt(B 2+C2); wa1 = atan2(B,C)·180/pi;

ws2 = sqrt(B 2+D2); wa2 = atan2(B,D)·180/pi;

ws3 = sqrt(A 2+D2); wa3 = atan2(A,D)·180/pi;

ws4 = sqrt(A 2+C2); wa4 = atan2(A,C)·180/pi;

ws1..ws4 and wa1..wa4 are the wheel speeds and whee l angles for wheels 1 through
4, which are front_right, front_left, rear_left, an d rear_right, respectively.

The angles are in the range -180 to +180 degrees, m easured clockwise, with zero
being the straight ahead position.

The wheel speeds need to be normalized before being used, as follows:

max=ws1; if(ws2>max)max=ws2; if(ws3>max)max=ws3; if (ws4>max)max=ws4;

if(max>1){ws1/=max; ws2/=max; ws3/=max; ws4/=max;}

The 4 wheel speeds are now in the range 0 to +1. N otice 0 to +1 and not -1 to
+1, because each speed is always in the direction o f the corresponding wheel
angle.

The 4 wheel speed and wheel angle pairs are now sui table for sending to a
control algorithm which will decide how to actuate the steering and drive motors
to achieve those speeds and angles for each wheel.

This is a separate and interesting problem, which m ay involve, for example,
logic to reverse the wheel speed instead of steerin g the wheel 180 degrees (and
similarly for other steering/speed commands). This control logic is highly
dependent on the limitations of the vehicle design, such as the response of the
steering motor, and the fact that some vehicles may have limitless steering
(coaxial or slip rings) whereas others may be steer ing-limited. More complex
logic may also take into account the current vehicl e speed and recent past
history in innovative ways. Computing the necessar y speed and angle errors to
send to a PID control (for example) may therefore b ecome a non-trivial task in
an effort to achieve smooth and seamless control.

