First Experiments With A New Motion Sensor - PMW3901
FIRST Robotics, Team 4579 RoboEagles

Federal Way High School

Federal Way, WA. 98003

Suheyb Aden, Lead Programmer

Morgan Dorval, Lead Electrical Systems

Joe Hafner, Lead Mentor

In the summer of 2017, a company called Bitcraze, makers of the Crazyflie drone, announced a new motion sensor for general purpose use. This product is their Flow Breakout board. We tried to use this sensor on our robot for the 2018 season. The remainder of this paper describes what we learned.

The Flow Breakout board has two sensors on it. One is the PMW3901 Optical Flow Sensor made by Pixart, and the other is the VL53L0X ToF distance sensor made by STMicroelectronics. We had experimented with the VL53L0X in 2017, and we didn't use it in 2018, so the remainder of this paper pertains solely to the PMW3901. The heart of this sensor is the same technology used in an optical mouse. It detects motion by identifying points in and calculating how they move within the viewing window. But this sensor has a different lens, making it operational at a height above the floor of 80 mm minimum, up to infinity (3.15” - infinity). Other key specifications are a 42 degree effective viewing angle, and a maximum motion detection rate of 7.4 radians per second. The breakout board will take either 3.3 or 5.0 volts for power, and is wired for communication via a 4 wire SPI interface with 2 MHz maximum clock frequency. In use, the sensor returns an x and y count indicating an amount of detected motion since the last reading. By calibrating the count in inches or mm and keeping track of time between readings, we can measure speed and distance.

The engineers at Bitcraze provide a sample Arduino program and wiring diagram to make it easy to start using your sensor. We tried this and it appeared to work as expected. In the test, you wave your hand over the sensor, a few inches away, and demonstrate that you get readings, and that you get no readings when nothing passes in front of the lens.

Based on the successful Arduino test, we created an interface cable between the breakout board and the RoboRio SPI interface, and we wrote a test program in Java that modeled the Arduino library code. We used the 5V power line from the SPI interface port to power the sensor, and the CS0 line for chip select. Since the SPI interface protocol is defined fairly loosely, we had to do some work to discover the proper settings on the RoboRio for the SPI interface. But we found we could only get 800 kHz communication speed, not the 2 MHz we expected. We also mounted the sensor to our robot about 100 mm from the floor. We added an LED light under the robot to illuminate the floor, and we started getting results. While trying to calibrate the sensor for the robot, we realized that we were getting unusual readings every fourth or fifth cycle. Further testing with the Arduino revealed a similar data pattern. After several months of debugging, including exchanges with the helpful engineers at Bitcraze, we discovered two key problems. One was a problem with the original Arduino code example on which we had based our Java code. The other was a problem with timing delays in the SPI interface in the RoboRio. Once we fixed both of those things, we got good readings.

The sensor chip has some critical timing specifications for the SPI interface that were not being met by the RoboRio SPI interface. The chip requires somewhat lengthy delays between chip selects, sequential reads, and writes. The Arduino library code from Bitcraze inserts these as required, but there is nothing in the RoboRio SPI interface to duplicate them. We learned that this was why we couldn't run faster than 800 kHz. To fix the problem, we first quit using the CS0 line on the SPI port for chip select, and instead used one of the Digital Output lines for that function. That allowed us to insert some of the proper delays in the software. We also quit trying to do a burst read of the registers and just read one register at at time. That also allowed us to insert proper delays in the software. The delays we needed are small, like 50 microseconds or 200 microseconds. To get these delays, we used for-loops in Java (see the section Flow Motion Sensor Test Code), and monitored the timing on an oscilloscope. We were then able to increase the communication speed to 2 MHz.

The original sample Arduino code from Bitcraze did not read the registers in numerical order. Since we modeled our Java code on the Arduino, we ended up with the same problem in both places. It's hard to see it when you just wave your hand over the sensor and see numbers on the screen. But once we fixed those, the spikes we had been reading went away on both the Arduino and the RoboRio.

All of this discovery took a lot of time, and we aren't finished yet. We still want to calibrate the sensor for various vertical distances, we want to characterize the sensor noise and design a good filter, we want to understand how it behaves when the robot is turning and spinning, not just going straight, and we want to understand how we can best incorporate this new information into the robot control logic. We think this sensor will be better than wheel encoders, particularly from a mechanical simplicity standpoint. With this in mind, we offer the attached code and other information as a good starting point for other FIRST teams who want to try out this motion sensor on their robots.

Mathematics for the Flow Motion Sensor

According to the datasheet, the sensor has a viewing window of 42º, which is the same as 0.73304 radians. We assume this is in both the x and y directions, but that is not specified on the data sheet.
The height of the sensor above the floor, and the angle of the sensor to the floor, has an effect on the maximum speed the sensor can read. The higher the sensor, the faster the motion it can read. At the same time, we lose resolution, defined as the minimum amount of motion to register a single count. Unfortunately, there is no resolution information in the data sheet, so we describe here what we know so far.
Consider the geometry of the sensor, looking directly down and perpendicular to the floor.

The Viewing Angle VA sweeps out a curved arc over the viewing area, and the floor distance covered is the chord C. The sensor is at height h above the floor.
We know that C = 2 * h * tan(θ / 2). Given C, we can calculate the maximum speed that the sensor can read. This is because the sensor sweeps out 0.73304 radians of viewing angle θ, and the maximum speed is 7.4 radians per second, for a ratio of 10.095 C distances per second maximum.
Thus we create a table of values of height h versus chord C. The table below shows the results of these calculations. Clearly, the higher the sensor is above the floor, the faster the robot can move without overrunning the sensor. While there is no information in the data sheet about the sensor resolution, we know that resolution is lost as height increases. We don't have much information yet, but we can share what we have. On the table you'll see an odd entry for 102 mm height. We tested this height with the sensor mounted on a bracket and sitting on a desk, arranged so we could move it a fixed distance repeatedly. At this height, we got an average of 112 counts per inch over a number of test runs of about 8-1/2” distance. We noticed that the count changed a little based on speed. We would expect that number to drop in half if we raise the sensor to 204 mm, but we haven't tested that yet. If you run your own tests, please share what you learn.

There are other considerations we have not yet tested. What happens if the sensor is tilted at an angle to the floor and not perpendicular? How does the sensor perform if part of the view is blocked by a robot part, like a wire or a churro? How does the sensor perform at different speeds but within it's maximum rating?

Table of Sensor Performance Calculations
Height h (mm) Height h (in) Chord C (mm) Max mm/sec Max in/sec

80
3.150
61.418
620.014
24.410

100
3.937
76.773
775.017
30.512

102
4.016
78.308
790.518
31.123

110
4.331
84.450
852.519
33.564

120
4.724
92.127
930.021
36.615

130
5.118
99.805
1007.522
39.666

150
5.906
115.159
1162.526
45.769

200
7.874
153.546
1550.035
61.025

250
9.843
191.932
1937.544
76.281

300
11.811
230.318
2325.052
91.537

350
13.780
268.705
2712.561
106.794

400
15.748
307.091
3100.070
122.050

450
17.717
345.478
3487.578
137.306

500
19.685
383.864
3875.087
152.562

600
23.622
460.637
4650.105
183.075

700
27.559
537.410
5425.122
213.587

800
31.496
614.182
6200.139
244.100

900
35.433
690.955
6975.157
274.612

1000
39.370
767.728
7750.174
305.125

Flow Motion Sensor Test Code
The code below is in two parts. The first part is a class package for the sensor class definition, and the second is the RoboRio main teleop program for testing. You should not need to change much in the class definition, unless you want to add print lines or create a different type of class definition. The main program, of course, needs to be modified to suit your specific robot base design.

We used for-loops to get the 50 microsecond and 200 microsecond delays we needed. Normally, this is not a good way to get delays in the code, but its the only way we could find to get sub-millisecond delays. We write a for-loop that doesn't do anything except count from zero to some large number.
for (int i=0; i<10000; i++) { }
This just burns up CPU cycles. In test, we added code to set a DIO pin before the loop, then to clear the pin after the loop, and we watched the pulse on an oscilloscope. We adjusted the loop count to get the necessary delay values we wanted. The actual delay values are a little more than required, and really could be reduced in some cases to 45 microseconds, but be careful and review the timing information for the sensor in the datasheet. And if anyone knows a better way to get microsecond-level delays in Java, please pass it along.

Because of the timing requirements of the sensor, we couldn't use the SPI CS0-3 chip select lines to address the sensor, but we still have to define a channel in the SPI definition, so one of the channels is taken anyway. You can decide which channel you want to use when you instance the sensor. You can even have more than one sensor if you'd like. In addition, the constructor needs one of the DIO channels allocated to the sensor, for use as a chip select line. Using the DIO line allows us to meet the timing requirements of the sensor.

We didn't write any getters for the sensor yet, because this was just a test, but you can see in the main program how we access the internal sensor data when we need it. Basically, we ask the sensor to make a reading, then we reference the data values directly from the object.

Most of the internal methods are private, because they aren't needed by a user of the sensor. Also, you'll notice that the initialization sequence is quite long. PixArt does not publish all the information in its datasheet to understand exactly what is happening in this long sequence of register writes, so we use what Bitcraze recommends without changes. Note that at the time of this writing there are some differences between the Arduino code library and the Crazyflie code library. The code below models the Crazyflie library because it was more up to date.

We don't know exactly what the shutter and squal registers are telling us, but the code reflects the instructions we received from the Bitcraze engineers about how to use those register readings. If we get a bad reading as indicated by values from shutter and squal, we just assume the motion has been constant and return the prior readings. We've never actually seen bad readings, and we're not sure how they happen. Perhaps when the motion is faster than the sensor can track, or maybe if the motion is too complex. In any case, we've not seen an actual bad reading in our testing. In your case, you may want to consider other logic should you see a bad reading.

You will see in the main program that we are using an Iterative Robot base class. We do this often for quick test programs because they have a much simpler architecture than Command Based.

Suggestions for improvements are always welcome. The code listings follow.
This is the Flow Motion Sensor class definition
package org.usfirst.frc.team4579.robot;

import edu.wpi.first.wpilibj.DigitalOutput;

import edu.wpi.first.wpilibj.SPI;

import edu.wpi.first.wpilibj.SensorBase;

import edu.wpi.first.wpilibj.Timer;

import edu.wpi.first.wpilibj.smartdashboard.SendableBuilder;

public class FlowDeck extends SensorBase {

// Define the public and private data values from the sensor.

public int deltaX, deltaY, squal, shutter;

public boolean goodSensor = false;

private int oldX, oldY = 0;

// Instantiate channels.

SPI spiFlow;

DigitalOutput cs;

// Constructor.

public FlowDeck(SPI.Port port, int chipSelectPort) {

// Create the SPI port.

spiFlow = new SPI(port);

// Create the Digital ChipSelect output bit.

cs = new DigitalOutput(chipSelectPort);

// Initialize the port and the sensor.

goodSensor = initSequence(cs);

}

//Primary functional method for the flow sensor. The calling program should

// execute this method, and if it returns true, access the data elements

// directly, like: count = flowSensor.deltaX;

public boolean readMotionCount() {

// Read the status register and test the motion bit to see if new data is available.

if ((registerRead((byte)0x02) & 0x80) == 0x80) {

// Read the rest of the data registers in numerical order, and convert to ints.

byte dXL = registerRead((byte) 0x03);

byte dXH = registerRead((byte) 0x04);

byte dYL = registerRead((byte) 0x05);

byte dYH = registerRead((byte) 0x06);

squal = (int) 0 | registerRead((byte) 0x07);

shutter = (int) 0 | registerRead((byte) 0x0C);

deltaX = ((int)dXH << 8) | dXL;

deltaY = ((int)dYH << 8) | dYL;

// Test for a bad reading, and use the prior reading instead.

if ((shutter == 31) & (squal < 25)) {

//

System.out.printf("**** BAD READING FROM FLOW SENSOR ****");

deltaX = oldX;

deltaY = oldY;

}

// Save the prior reading.

oldX = deltaX;

oldY = deltaY;

return true;

}

else {

// No motion detected.

deltaX = 0;

deltaY = 0;

squal = 0;

shutter = 0;

return false;

}

}

// Write a register via the SPI port.

private void registerWrite(byte reg, byte value) {

// Data transfer buffer.

byte[] flowdata = new byte[2];

// Set the high order bit on the write register.

reg |= (byte)0x80;

// Populate the buffer.

flowdata[0] = reg;

flowdata[1] = value;

// Set chip select.

cs.set(false);

for (int i=0; i<11000; i++) {}
//delay 50 usec.

spiFlow.write(flowdata, 2);
//write the register address, and read the data.

for (int i=0; i<11000; i++) {}
//delay 50 usec.

// Clear chip select.

cs.set(true);

for (int i=0; i<44000; i++) {}
//delay 200 usec.

//

System.out.printf("registerWrite buffer = [0]%02X [1]%02X\n", flowdata[0], flowdata[1]);

} // End of registerWrite.

// Read a register byte via the SPI port.

byte registerRead(byte reg) {

// Data transfer buffer.

byte[] flowdata = new byte[2];

// Clear the high order bit on the read register.

reg &= 0x7F;

// Populate the buffer.

flowdata[0] = reg;

flowdata[1] = 0;

// Set chip select.

cs.set(false);

for (int i=0; i<11000; i++) {}
//delay 50 usec.

spiFlow.write(flowdata, 1);
//write the reg address.

for (int i=0; i<11000; i++) {}
//delay 50 usec.

spiFlow.read(true, flowdata, 1);
//read the register data.

for (int i=0; i<44000; i++) {}
//delay 200 usec.

// Clear chip select.

cs.set(true);

//

System.out.printf("registerRead buffer = [0]%02X [1]%02X\n", flowdata.get(0), flowdata.get(1));

return flowdata[0];

} // End of registerRead.

// Initialize the SPI Port and the sensor chip.

private boolean initSequence(DigitalOutput cs) {

// Configure these settings to match SPI Mode 3. (See Wikipedia)

spiFlow.setClockRate(2000000); //2 MHz

spiFlow.setMSBFirst();

spiFlow.setSampleDataOnRising();

spiFlow.setClockActiveHigh();

spiFlow.setChipSelectActiveLow();

System.out.println("SPI port is initialized.");

// Reset the sensor SPI bus.

cs.set(true);

Timer.delay(0.001);

cs.set(false);

Timer.delay(0.001);

cs.set(true);

Timer.delay(0.001);

// Initialize the sensor chip.

// Power on reset

registerWrite((byte)0x3A, (byte)0x5A);

Timer.delay(.005);

// Test the SPI communications, checking chipId and inverse chipId

byte Product_ID = registerRead((byte)0x00);

byte Inverse_Product_ID = registerRead((byte)0x5F);

System.out.printf("*** ChipID 0x49: %02X, InverseChipID 0xB6: %02X\n", Product_ID,

Inverse_Product_ID);

if (Product_ID !=(byte)0x49 && Inverse_Product_ID !=(byte)0xB6) {

System.out.println("Sensor chip did not initialize.");

return false;

}

// Reading the motion registers one time. The data isn't used.

registerRead((byte)0x02);

registerRead((byte)0x03);

registerRead((byte)0x04);

registerRead((byte)0x05);

registerRead((byte)0x06);

Timer.delay(.001);

// Initialize the chip's registers.

registerWrite((byte)0x7F,(byte)0x00);

registerWrite((byte)0x61,(byte)0xAD);

registerWrite((byte)0x7F,(byte)0x03);

registerWrite((byte)0x40,(byte)0x00);

registerWrite((byte)0x7F,(byte)0x05);

registerWrite((byte)0x41,(byte)0xB3);

registerWrite((byte)0x43,(byte)0xF1);

registerWrite((byte)0x45,(byte)0x14);

registerWrite((byte)0x5B,(byte)0x32);

registerWrite((byte)0x5F,(byte)0x34);

registerWrite((byte)0x7B,(byte)0x08);

registerWrite((byte)0x7F,(byte)0x06);

registerWrite((byte)0x44,(byte)0x1B);

registerWrite((byte)0x40,(byte)0xBF);

registerWrite((byte)0x4E,(byte)0x3F);

registerWrite((byte)0x7F,(byte)0x08);

registerWrite((byte)0x65,(byte)0x20);

registerWrite((byte)0x6A,(byte)0x18);

registerWrite((byte)0x7F,(byte)0x09);

registerWrite((byte)0x4F,(byte)0xAF);

registerWrite((byte)0x5F,(byte)0x40);

registerWrite((byte)0x48,(byte)0x80);

registerWrite((byte)0x49,(byte)0x80);

registerWrite((byte)0x57,(byte)0x77);

registerWrite((byte)0x60,(byte)0x78);

registerWrite((byte)0x61,(byte)0x78);

registerWrite((byte)0x62,(byte)0x08);

registerWrite((byte)0x63,(byte)0x50);

registerWrite((byte)0x7F,(byte)0x0A);

registerWrite((byte)0x45,(byte)0x60);

registerWrite((byte)0x7F,(byte)0x00);

registerWrite((byte)0x4D,(byte)0x11);

registerWrite((byte)0x55,(byte)0x80);

registerWrite((byte)0x74,(byte)0x1F);

registerWrite((byte)0x75,(byte)0x1F);

registerWrite((byte)0x4A,(byte)0x78);

registerWrite((byte)0x4B,(byte)0x78);

registerWrite((byte)0x44,(byte)0x08);

registerWrite((byte)0x45,(byte)0x50);

registerWrite((byte)0x64,(byte)0xFF);

registerWrite((byte)0x65,(byte)0x1F);

registerWrite((byte)0x7F,(byte)0x14);

registerWrite((byte)0x65,(byte)0x67);

registerWrite((byte)0x66,(byte)0x08);

registerWrite((byte)0x63,(byte)0x70);

registerWrite((byte)0x7F,(byte)0x15);

registerWrite((byte)0x48,(byte)0x48);

registerWrite((byte)0x7F,(byte)0x07);

registerWrite((byte)0x41,(byte)0x0D);

registerWrite((byte)0x43,(byte)0x14);

registerWrite((byte)0x4B,(byte)0x0E);

registerWrite((byte)0x45,(byte)0x0F);

registerWrite((byte)0x44,(byte)0x42);

registerWrite((byte)0x4C,(byte)0x80);

registerWrite((byte)0x7F,(byte)0x10);

registerWrite((byte)0x5B,(byte)0x02);

registerWrite((byte)0x7F,(byte)0x07);

registerWrite((byte)0x40,(byte)0x41);

registerWrite((byte)0x70,(byte)0x00);

Timer.delay(0.01);

registerWrite((byte)0x32,(byte)0x44);

registerWrite((byte)0x7F,(byte)0x07);

registerWrite((byte)0x40,(byte)0x40);

registerWrite((byte)0x7F,(byte)0x06);

registerWrite((byte)0x62,(byte)0xf0);

registerWrite((byte)0x63,(byte)0x00);

registerWrite((byte)0x7F,(byte)0x0D);

registerWrite((byte)0x48,(byte)0xC0);

registerWrite((byte)0x6F,(byte)0xd5);

registerWrite((byte)0x7F,(byte)0x00);

registerWrite((byte)0x5B,(byte)0xa0);

registerWrite((byte)0x4E,(byte)0xA8);

registerWrite((byte)0x5A,(byte)0x50);

registerWrite((byte)0x40,(byte)0x80);

registerWrite((byte)0x7F,(byte)0x00);

registerWrite((byte)0x5A,(byte)0x10);

registerWrite((byte)0x54,(byte)0x00);

System.out.println("Sensor chip is initialized.");

return true;

} // End of initSequence.

@Override

public void initSendable(SendableBuilder builder) {

// TODO Auto-generated method stub

}

} // End of class definition.
This is the main program for the robot to test the Flow Motion Sensor class
//==

/*--*/

/* Copyright (c) 2017-2018 FIRST. All Rights Reserved. */

/* Open Source Software - may be modified and shared by FRC teams. The code */

/* must be accompanied by the FIRST BSD license file in the root directory of */

/* the project. */

/*--*/

package org.usfirst.frc.team4579.robot;

import edu.wpi.first.wpilibj.IterativeRobot;

import edu.wpi.first.wpilibj.Joystick;

import edu.wpi.first.wpilibj.drive.DifferentialDrive;

//import edu.wpi.first.wpilibj.drive.MecanumDrive;

import edu.wpi.first.wpilibj.SPI;

import edu.wpi.first.wpilibj.SensorBase;

import edu.wpi.first.wpilibj.SpeedController;

import edu.wpi.first.wpilibj.SpeedControllerGroup;

//import edu.wpi.first.wpilibj.Timer;

import edu.wpi.first.wpilibj.Victor;

import edu.wpi.first.wpilibj.smartdashboard.SendableBuilder;

import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;

import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;

import org.usfirst.frc.team4579.robot.FlowDeck;

/**

 * The VM is configured to automatically run this class, and to call the

 * functions corresponding to each mode, as described in the IterativeRobot

 * documentation. If you change the name of this class or the package after

 * creating this project, you must also update the build.properties file in the

 * project.

 */

public class Robot extends IterativeRobot {

private static final String kDefaultAuto = "Default";

private static final String kCustomAuto = "My Auto";

private String m_autoSelected;

private SendableChooser<String> m_chooser = new SendableChooser<>();

SpeedController leftFront = new Victor(0);

SpeedController rightFront = new Victor(3);

SpeedController leftRear = new Victor(1);

SpeedController rightRear = new Victor(2);

SpeedControllerGroup leftSide = new SpeedControllerGroup(leftFront, leftRear);

SpeedControllerGroup rightSide = new SpeedControllerGroup(rightFront, rightRear);

DifferentialDrive drive = new DifferentialDrive(leftSide, rightSide);

Joystick stick = new Joystick(0);

FlowDeck motion;

// This creates an instance of the motion sensor.

int accumX, accumY;

// These accumulate sensor counts.

public void initSendable(SendableBuilder builder) {

// TODO Auto-generated method stub

}

/**

 * This function is run when the robot is first started up and should be

 * used for any initialization code.

 */

@Override

public void robotInit() {

m_chooser.addDefault("Default Auto", kDefaultAuto);

m_chooser.addObject("My Auto", kCustomAuto);

SmartDashboard.putData("Auto choices", m_chooser);

System.out.println("*** Robot Init running.");

motion = new FlowDeck(SPI.Port.kOnboardCS0, 3);

System.out.printf("*** Flow Sensor detected: %B\n", motion.goodSensor);

if (!motion.goodSensor) {System.out.println("Motion Sensor Initialization failed!");}

}

/**

 * This autonomous (along with the chooser code above) shows how to select

 * between different autonomous modes using the dashboard. The sendable

 * chooser code works with the Java SmartDashboard. If you prefer the

 * LabVIEW Dashboard, remove all of the chooser code and uncomment the

 * getString line to get the auto name from the text box below the Gyro

 *

 * <p>You can add additional auto modes by adding additional comparisons to

 * the switch structure below with additional strings. If using the

 * SendableChooser make sure to add them to the chooser code above as well.

 */

@Override

public void autonomousInit() {

m_autoSelected = m_chooser.getSelected();

// autoSelected = SmartDashboard.getString("Auto Selector",

// defaultAuto);

System.out.println("Auto selected: " + m_autoSelected);

}

/**

 * This function is called periodically during autonomous.

 */

@Override

public void autonomousPeriodic() {

switch (m_autoSelected) {

case kCustomAuto:

// Put custom auto code here

break;

case kDefaultAuto:

default:

// Put default auto code here

break;

}

}

/**

 * This function is called periodically during operator control.

 */

@Override

public void teleopPeriodic() {

if (motion.goodSensor) {

drive.arcadeDrive(-stick.getY(), stick.getX());

if (motion.readMotionCount()) {

accumX += motion.deltaX;

accumY += motion.deltaY;

if (motion.deltaX < -1 | motion.deltaX > 1)

System.out.printf(" %6d\t%6d\t%6d\t%6d\t%6d\t%6d\n",motion.deltaX,

motion.deltaY, accumX, accumY, motion.squal, motion.shutter);

}

}

} // End of teleopPeriodic().

/**

 * This function is called periodically during test mode.

 */

@Override

public void testPeriodic() {

}

}
Useful links
Bitcraze company: https://www.bitcraze.io
Flow Breakout board: https://www.bitcraze.io/flow-breakout/
Sample Arduino setup: https://www.bitcraze.io/getting-started-flow-breakout/
Bitcraze User Forum discussion: https://forum.bitcraze.io/viewtopic.php?f=2&t=2882
(This is where we worked with the Bitcraze engineers to clear up the issues we were having with our initial setup with the Flow Breakout.)

PixArt Imaging Inc. PMW3901 datasheet: http://www.pixart.com.tw/upload/POT0189-PMW3901MB-TXQT-DS-R1.10-200617%20(NonNDA)_20170720181537_20170802183402.pdf
STMicroelectronics VL53L0X datasheet: http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/b2/1e/33/77/c6/92/47/6b/DM00279086/files/DM00279086.pdf/jcr:content/translations/en.DM00279086.pdf
VA

C

h

