
Git(hub) Training

Installing git

Windows: https://git-scm.com/download/win

Mac: Git will be automatically installed when you first use it

Linux: sudo apt install git

https://git-scm.com/download/win

Basic ideas

● Repository
○ A bunch of code that accomplishes some project or goal (i.e. an app)

● Commit
○ A set of changes made to the code

● Branch
○ A version of the repository where some feature is being implemented/tested

● Fork
○ Someone’s copy of a repository on their own Github account

● Remote
○ Link to fork of a repository, allows access to multiple forks

Basic ideas (cont.)

● HEAD
○ Your ‘location’ in a branch, usually the most recent commit

● Index
○ Changes that are ready to be committed (staged)

● Working directory/tree
○ Where you are now, including changes that haven’t yet been ‘staged’

Make a fork

● Fork this repository for the training today
○ Go to github.com/ccsaposs/git-training
○ Click the “Fork” button in the top right

Setting up

● Clone your forked repo (copy from github to your computer)
●

● Navigate into the local repo

● Add upstream remote (the main codebase)

● Fetch from the upstream remote

○ Updates information from the main repo so you know what branches you have

> git clone https://github.com/[your-username]/git-training

> git remote add upstream https://github.com/ccsaposs/git-training

> git fetch upstream

> cd git-training

Remotes

● Link between git and Github
○ Lets you get (fetch) code from github and send (push) code to github

● Naming conventions
○ upstream - the repo you forked

■ Usually frc1678
■ In this case, ccsaposs

○ origin - your fork
○ <first-name> - buddy forks (other people in your app group)

■ e.g. “carl”
● List all remotes: git remote

First change
● Open SPR.py

○ Change the range for “randint” from (1,5) to (1,8)
○ Save

● Check git status, check git diff

> git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

modified: SPR.py

no changes added to commit (use "git add" and/or "git commit -a")

Second change
● Open server.py

○ Change the time.sleep() from 5 to 15
○ Save

● Check git status, check git diff

> git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

modified: SPR.py
modified: server.py

no changes added to commit (use "git add" and/or "git commit -a")

First commit

> git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

modified: SPR.py
modified: server.py

● Stage SPR.py and server.py for commit
○ When we commit, only the staged changes will be included
○ git add SPR.py
○ git add server.py

● Check git status

First commit

● Wait! We don’t want SPR.py and server.py in the same commit!
○ They’re separate changes
○ We want to keep our commits as small as possible
○ Should the following be separated?

i. Moving code around, updating comments
ii. Renaming a file, deleting commented out code
iii. Changing an import in two different files

● We want to unstage server.py
○ git reset HEAD server.py

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

First commit

● git status

> git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

modified: SPR.py

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

modified: server.py

First commit

● Create a commit
○ git commit
○ Type a good commit message

■ Subject line - 50 characters or less
■ Extended description should be

included unless the change is very
simple
● Each line should be 72

characters or less

Modify ‘Aakash’ SPR multiplier.

Change random integer possible range from (1,5) to (1,8) for ‘Aakash’
SPR multiplier.

Example
commit

message

7250
(separate w/blank line)

Second commit

● Let’s add the server.py changes
○ git add server.py
○ git commit

● What is a good commit message?
● Check git log

○ Shows history of commits

Third commit

● Open SPR.py
○ We don’t want to display SPRs
○ In the print statement, replace the SPR with “redacted”.
○ Add and commit changes

● What is a good commit message?

Notes on commits

● Use the imperative mood (i.e. “Change this thing”, “Add this feature”)
● Be extremely specific about changes you made, if they don’t fit into a subject

line, use an extended description
● Amending the most recent commit message

● Should I amend commit messages already on Github?
○ No. This changes the entire history of the repository. That means that anyone else working on

this code will have to manually change their history, which should not be their responsibility
● Make sure your commits are small, so only add a few changes at a time. This

leaves a more detailed description for anyone else working on the branch
● Changing commit text editor

> git commit --amend

> git config --global core.editor “[text editor]”

Branches

● Check git status

What does “On branch master” mean?

> git status
On branch master
Your branch is ahead of 'origin/master' by 3 commits.
 (use "git push" to publish your local commits)

nothing to commit, working tree clean

Branches

● A branch is a version of the repository
○ Branches are used to work on multiple, unrelated changes at the same time

■ e.g. Updating SPR calculations and changing timing in server.py

● Branches can have different commits
● Branches should only have 1 feature

○ Separate unrelated changes into different branches
○ Why? Easier to collaborate, review, and fix problems

Branches

● The master branch should never be committed to.
● Oh no! We’ve already made 3 commits on the master branch.
● How should we have done it?

○ 2 branches, one for server.py, one for SPR.py

● Let’s look at how we should have done it:
○ Before we create a branch, we want to make sure we have the latest code

Updating code

● Fetching

○ Updates information from a remote
● Merging

○ Combines the master branch of the upstream remote with your HEAD
● Pulling

○ Shorthand for the above two commands, will merge remote code with local code

> git merge upstream/master

> git fetch upstream

> git pull upstream master

● Create branch

● Switch to branch

● List branches

● Delete branch

Tip:

will create a new branch and switch to it

Branches

> git checkout [branch-name]

> git branch

> git branch -d [branch-name]

> git branch [branch-name]

> git checkout -b [branch-name]

Branches

● How do we fix this?
○ What do we need to do?

■ Create a “SPR.py” branch
● Move the 1st and 3rd commits we made to this branch

■ Create a “server.py” branch
● Move the 2nd commit we made to this branch

■ Restore the “master” branch to match upstream

Branches

● Let’s start with by moving the 2nd commit to the “server.py” branch
● We need to start our branch based on upstream/master

○ git checkout upstream/master

○ Create and checkout a new branch called “server.py”
○ To move the commit, we can “cherry-pick” it

Cherry picking!

> git cherry-pick [commit]

● Super useful command

○ Takes a single commit and moves it to the current branch
■ Specific a commit using its hash (which can be found using git log)

Don’t be afraid to cherry-pick!

● Let’s cherry-pick that 2nd commit
○ Check git log afterwards to see if you did it correctly

Branches

● Now we need to isolate the 1st and 3rd commits in the “SPR.py” branch
● Let’s start with all 3 of our commits

○ git checkout master

○ Create and checkout a new branch called “SPR.py”
○ We can ‘re-arrange’ the commits using git rebase [commit] -i

■ Change the 2nd commit from “pick” to “drop”
■ Save and close

○ Check git log

Branches

● Last step: reset the master branch to match upstream/master
● First, switch to the master branch
● We can use git reset

Resetting

● Soft resetting

○ Un-commits previous commit, files are still changed and staged for change, but changes are no
longer part of the commit history

● Mixed resetting

○ Goes one step further, unstages commits, but changes are still there in working directory
● Hard resetting ***HERE BE DRAGONS***

○ Destroys changes, they no longer exist, completely resets to previous commit

> git reset --soft

> git reset --mixed

> git reset --hard

Branches

● Last step: reset the master branch to match upstream/master
● First, switch to the master branch
● We can use git reset

○ Which one do we want to use? (hard, soft, or mixed)
○ git reset --hard upstream/master

● Next, let’s upload our changes to github
○ So far, all of this has been local to our computer

Changing code on github

● Pushing code

● Making a PR!
○ On github, navigate to your fork. If you recently pushed, there should be a popup asking if you

want to make a new PR
○ If you didn’t recently push or you’re creating a PR from someone else’s fork:

■ Head to the main repository and click “New Pull Request”. Then specify the fork and
branch you want to use.

○ Good code review will be covered outside of this training

● Adding to a PR
○ Just make new commits and push to the same branch on the same remote, your PR will update

automatically

> git push [remote name] [branch-name]

More notes on pushing

● Pushing from a specific branch

○ First branch is what you want to push from, second is what you want to push to
■ Use this if your branch name doesn’t match the branch name on github

● Deleting a branch

○ Same as above, but you’re pushing nothing to the branch, wiping it clean

> git push [branch-name]:[branch-name]

> git push :[branch-name]

Code review

● Let’s practice our new code review process
○ On github, we have labels to mark if a PR (pull request) needs review

■ On your PR, add the needs review label
● Look at the scout-QR-2019 README.md for a recap of the process
● First, pair up with someone for the buddy review

○ Adding your review to github
■ Click “Files Changed”
■ Click “Review changes”

● After everyone’s done, you’ll pair up with a different person for the peer review
○ Add your review to github

Other remotes

● We want to get code from David’s fork
● First, add his repo as a remote

○ git remote add david https://github.com/daviji/git-training
○ git fetch david

● Let’s checkout his function-rename branch
○ git checkout function-rename

● David’s last commit broke the server
○ How do we fix it?

■ We can’t remove the commit, it’s already on github
■ Let’s revert it

Reverting

● Revert to commit/branch

○ “Undo” for the commit, creates a new revert commit
○ Allows you to go back to previous commits

● Using checkout

○ Doesn’t create revert commit
○ Simply takes you back to previous commit, future changes still saved
○ File name is optional, will revert only that file

> git revert [commit ref]

> git checkout [commit ref] -- [file name]

Let’s make one last change

● In SPR.py, replace “random.randint()” with “8”
● Check git status

> git status
On branch function-rename
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

modified: SPR.py

no changes added to commit (use "git add" and/or "git commit -a")

Let’s make one last change

● Oh no! We’re on the wrong branch!
● How do we take our changes over to a different branch?

○ We haven’t committed yet
○ We can do git stash to save uncommitted changes

●

○ “Stores” changes without committing, you can then navigate and apply changes to
wherever. Be careful with this, as it is working with unsaved changes

> git stash

Finishing up

● Create a new branch to put the stashed changes on
○ What do we need to do first?

● Once you have a branch, use git stash pop to “release” the changes
● Push this to Github and create a PR

○ We won’t review for this one

Professionalism with git(hub)

● All commit messages should be strictly professional
○ Both in the subject line and extended description
○ We want the information to be concise and as useful as possible
○ Includes PR commits

● Code review/testing messages
○ When approving, not as strict

■ Include the necessary information first
● (e.g. “Buddy review completed” or “User testing successful”)

■ You can (but do not need to) add other comments after
● (e.g. “Nice job!” or “Good to finally get this done!”)

○ When requesting changes, keep the information concise + useful
● Keep in mind that 1678 is the go-to example in FRC for electronic scouting

○ We open-source our code, lots of teams will be able to see these messages

Any Questions?

Feel free to ask me or Carl if anything else comes up

